

"Optimization of the Formulation of Certain Buccal Delivery System"

A thesis submitted in the partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences (Pharmaceutics)

Ву

REHAM ABDEL MAKSOUD ZAYED

Research Assistant in National Organization for Drug Control and Research (NODCAR)

Under the supervision of

Prof. Dr. Abdelhameed El Shamy

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Amany Osama Kamel

Associate professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Marwa Hassan Shukr

Lecturer of Pharmaceutics National Organization for Drug Control and Research

Faculty of Pharmacy
Ain Shams University
2014

Dedicated to

My Parents, My Husband, My Brother,

My Sister and My Lovely son Omayr

Acknowledgment

Praise is to ALLAH, the most merciful and most gracious, who gave me the power, help and patience to fulfill this work

I would like to express my deepest appreciation and sincere gratitude to **Professor Dr. Abdelhameed El Shamy** (may ALLAH rest his soul), Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for his instructive supervision, kind help and generous attitude throughout the development of this work.

I am in great debt to **Dr. Amany Osama Kamel**, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who had supported me throughout my thesis with her patience and knowledge and provided me extensive professional guidance, she is my responsible teacher who bored a lot of work load until this thesis was completed, hoping to continue my scientific future under her supervision and wishing her deeply from my heart successful life.

I would like to extend my deep thanks and gratitude to **Dr. Marwa** Hassan Shukr, Lecturer of Pharmaceutics, Department of Pharmaceutics, National Organization for Drug control and Research (NODCAR) for her supervision, continuous guidance, recommendations, helpful discussions and valuable suggestions, wishing her the best of everything.

I would like to express my deepest appreciation and gratitude to **Dr. Gehan Hegazy**, head of CVS lab and **Dr. Enaam Abdel-Mohsen** for their great support throughout my thesis.

I would like to extend my deep thanks to **Dr. Ghada Farouk**, head of tissue caluture lab and **Dr. Manal Yassin**, head of pharamaceutics lab in NODCAR for their help and support for completing my experimental evaluations during this work.

I like to thank **DR**. **Dina Mahmoud** and for her valuable help and support during this work. May ALLAH reward her great efforts.

I would like to extend my deep thanks to all my colleagues of National Organization for Drug and Research and everyone who helped me and wished me success.

No words can express my feelings towards my beloved family, my parents, husband, brother, sister and my cute son Omayr who trusted me and wished me success in every step of my life. I deeply appreciate their patience, support and love throughout my entire life.

List of Contents

Item	Page
List of Abbreviations	IV
List of Tables	VII
List of Figures	IX
Abstract	XI
General Introduction	1
Scope of work	15
Chapter 1: Formulation and evaluation of sildenafil citrate	
sublingual tablets using Solid dispersion technique.	
Introduction	17
Experimental	25
Methodology	27
Ultraviolet scanning of SILD in the presence and absence of	27
carriers in distilled water adjusted to pH 6.8	21
Construction of the calibration curve of SILD in distilled	27
water (pH=6.8)	21
Preparation of SILD-PEG and SILD-poloxamer188 SDs	28
A) Preparation of physical mixtures	28
B) Preparation of SDs	28
Evaluation of the prepared SDs	29
Preparation of tablets by direct compression.	31
Evaluation of the prepared tablets	33
Statistical analysis	37
Results and Discussion	38
Ultraviolet scanning of SILD in the presence and absence of	38
carriers in distilled water adjusted to pH 6.8	36
Calibration curve of SILD in distilled water (pH=6.8)	38
Evaluation of the prepared SDs	41
1- Homogeneity of the prepared SDs	41
2- Solubility studies	42
3- Dissolution studies	45
4- Bitterness evaluation	55
5- Differential scanning calorimetry	57
6- X-ray powder diffraction analysis	59
7- Fourier transform infrared spectroscopy	62

Evaluation of the prepared SD tablets.	
1- Determination of tablet hardness, thickness and diameter	64
2- Uniformity of weight	66
3- Friability test	67
4- Uniformity of SILD content	68
5- Wetting time and water absorption ratio	69
6- In vitro disintegration time	70
7- In vivo oral disintegration time	71
8- In vitro dissolution studies.	72
Conclusion	77
Chapter 2: Formulation and evaluation of sildenafil	
citrate sublingual tablets using lyophilization technique	
Introduction	78
Experimental	82
Methodology	84
Preparation of SILD lyophilized STs	84
A-Preparation of SILD lyophilized STs using sugar matrix	
former (maltodextrin)	
B-Preparation of SILD lyophilized STs using non sugar	85
matrix former (gelatin)	
Evaluation of the prepared tablets	87
Statistical analysis	89
Results and Discussion	90
Evaluation of the prepared STs	90
1- Uniformity of weight	90
2- Friability test	91
3- Uniformity of SILD content	93
4. Wetting time	
5. <i>In vitro</i> and <i>in vivo</i> disintegration time	95
6- Moisture content analysis	97
7- <i>In vitro</i> dissolution studies	98
8-Differential Scanning Calorimetery	102
9-X-ray powder diffraction analysis	104
10-Fourier transform infrared spectroscopy	108
Conclusion	110

Chapter 3: Bioavailability and pharmacokinetic study of	
sildenafil citrate sublingual tablets in human volunteers.	
Introduction	111
Experimental	114
Methodology	116
LC-MS/MS assay of SILD in human plasma	116
Chromatographic conditions	116
Method validation	117
1- Calibration curve of SILD in human plasma	117
2- Recovery	117
3- Accuracy and precision	118
Pharmacokinetic study in healthy volunteers	118
A- Subject selection	118
B- Study design and drug administration	119
C- Sample collection	119
D- Sample preparation	120
E- Pharmacokinetic and statistical analysis	120
Results and Discussion	
Conclusion	133
Summary	
Conclusion	
References	143

List of Abbreviations

Analysis of variance	ANOVA
Area under the plasma concentration-time curve	$\mathrm{AUC}_{0\text{-}12}$
from time zero to 12 hours	
British pharmacopeia	BP
Carbon dioxide	CO_2
Centimetre	cm
Coefficient of variance	C.V
Collision energy	CE
Collision exit potential	CXP
Cyclic guanosine monophosphate	cGMP
Cytochrome P450 2C9	CYP2C9
Cytochrome P450 3A4	CYP3A4
Dalton	Da
Declustering potential	DP
Degree celius	°C
Differential Scanning Calorimetery	DSC
Disintegration time	DT
Entrance potential	EP
Food and drug administration	FDA
Fourier transform infrared spectroscopy	FTIR
Gastrointestinal tract	GIT
Gram	g
Hour	h
Human immunodeficiency virus	HIV
Idiopathic pulmonary arterial hypertension	IPAH
Infra red	IR
Internal standard	IS
Kilovolt	kV
Lambda maximum	$\lambda_{ ext{max}}$
Liquid chromatography/Mass-Mass	LC-MS/MS
spectrophotometer	
Litre	L
Magnesium stearate	Mg.stearate
Mass-to-charge ratio	m/z
Melting point	m.p.
Membrane coating granules	MCG

Metre	m
Microgram	μg
Microlitre	μl
Micrometre	μm
Milliampere	mA
Millibar	mbar
Milligram	mg
Milliliter	ml
Millimeter	mm
Millimetre mercury	mmHg
Minutes	min
Molar	M
Molecular weight	MW
Multiple reaction monitoring	MRM
Nano metre	nm
Nanogram	ng
Newton	N
Peak area ratio	PAR
Peak plasma concentration	C_{max}
Phosphodiestrase type 5	PDE5
Physical mixtures	PX
Polyethylene glycol	PEG
Polyethylene oxide	PEO
Polypropylene oxide	PPO
Polyvinylchloride	PVC
Polyvinylidene chloride	PVDC
Polyvinylpyrrolidine	PVP
pound-force per square inch	psi
Primary pulmonary hypertension	PPH
Pulmonary Arterial Hypertension	PAH
Pulmonary hypertension	PH
Rapid Expansion of Supercritical Solution	RESS
Relative degree of crystallinity	RDC
Revolutions per minute	rpm
Second	sec
Sildenafil citrate	SILD
Sodium starch glycolate	SSG
Solid dispersion	SD

Solid dispersion technique	SDT
Specific phosphodiesterase type 5	PDE5
Standard deviation	S.D
Sublingual tablets	STs
Sulphur dioxide	SO_2
Terminal elimination rate constant	λz
Time to reach peak plasma concentration	T_{max}
Ultraviolet	UV
United Kingdom	UK
United States	U.S.
United States of America	USA
United States Pharmacopeia	USP
Volt	V
Volume per volume	v/v
Weight	W
Weight per weight	W/W
World Health Organization	WHO
Xanthan gum	X.gum
X-ray powder diffraction analysis	XRPD

List of Tables

Table number	Table Name	Page
1	Composition of SILD sublingual tablets	32
2	Mean absorbance of SILD measured spectrophotometrically at 291 nm in distilled water for the concentration range 10 to 50 µg/mL	39
3	Determination of SILD content in different SILD SDs	41
4	solubility of different SILD-PEGs and SILD-Poloxamer physical mixtures	43
5	solubility of different SILD-PEGs and SILD-Poloxamer SDs	44
6	<i>In vitro</i> dissolution data of SILD from different SILD-Poloxamer SDs in distilled water at 37°C	47
7	<i>In vitro</i> dissolution data of SILD from different SILD-PEG 4000 SDs in distilled water at 37°C	49
8	In vitro dissolution data of SILD from different SILD-PEG 6000 SDs in distilled water at 37°C	51
9	In vitro dissolution data of SILD from different SILD-PEG 8000 SDs in distilled water at 37°C	53
10	Bitterness evaluation of the prepared SDs	56
11	Relative degree of crystallinity of the prepared SDs	62
12	Diameter, thickness and hardness of the prepared SILD STs	65
13	Uniformity of weight of the prepared SILD STs	66
14	Friability testing of SILD STs	67
15	SILD content in the prepared STs	68
16	Wetting time and water absorption ratio of the prepared SILD STs	69
17	In vitro DT of the prepared SILD STs	70
18	In vivo oral DT of the prepared SILD STs	71
19	<i>In vitro</i> dissolution data of SILD from different SILD STs in distilled water at 37°C	75

20	composition of SILD lyophilized STs	86
21	Uniformity of weight of the prepared SILD lyophilized STs	90
22	Friability testing of SILD lyophilized STs	92
23	SILD content in the prepared lyophilized STs	93
24	Wetting time of the prepared SILD lyophilized STs	94
25	In <i>vitro</i> and in <i>vivo</i> oral DT of the prepared SILD lyophilized STs	96
26	Residual moisture of the prepared SILD lyophilized STs	97
27	Dissolution of SILD lyophilized STs containing gelatin as a matrix former	100
28	Relative degree of crystallinity of the prepared F4	106
29	Relation between SILD concentration and the peak area ratio of SILD/IS in spiked human plasma	123
30	Recovery data of SILD from spiked human plasma	124
31	Within-day precision of the LC/MS-MSmethod for SILD determination in human plasma	125
32	Inter-day precision and linearity of the LC/MS-MS method for SILD determination in human plasma.	126
33	Mean plasma concentration-time data of SILD following administration of S7, F4 and oral Revatio® to human volunteers	128
34	Pharmacokinetic parameters of SILD after administration of SD sublingual tablets, lyophilized sublingual tablets and commercial oral tablets (Revatio®) to human volunteers	132

List of Figures

Figure no.	Figure Name	Page
I	Schematic representation of the different linings of mucosa in mouth	3
II	Schematic diagram of buccal mucosa	3
III	Structure of sildenafil citrate	12
1	Poloxamer chemical structure with hydrophilic PEO block (a) and hydrophobic PPO block (b)	19
2	PEG chemical structure where n is the average number of repeating oxyethylene groups	19
3	UV spectrum of SILD in distilled water	39
4	Standard Calibration curve of SILD in distilled water at 291 nm	40
5	Dissolution profiles of SILD-Poloxamer SDs compared to plain SILD	48
6	Dissolution profiles of SILD-PEG 4000 SDs compared to plain SILD	50
7	Dissolution profiles of SILD-PEG 6000 SDs compared to plain SILD	52
8	Dissolution profiles of SILD-PEG 8000 SDs compared to plain SILD	54
9	DSC thermogram of A) SILD, B) SD1, C) poloxamer 188, D) SD10, E) PEG8000	58
10	X- Ray diffraction pattern of A) SILD, B) PEG8000, C) poloxamer 188, D) SD10 and E) SD1	61
11	FTIR spectra of A) SILD, B) PEG8000, C) poloxamer 188, D) SD10 and E) SD1	63
12	Dissolution profiles of SILD STs compared to commercial tablets (Revatio)	76
13	Dissolution profiles of SILD STs compared to commercial tablets (Revatio)	101
14	DSC thermogram of A) SILD, B) Physical mixture, C) F4	103
15	X- Ray diffraction pattern of A) SILD, B) Physical mixture, C) F4	107

16	FTIR spectra of A) SILD, B) Physical mixture, C) F4	109
17	N-Desmethyl sildenafil	113
18	A representative chromatogram obtained from processed human plasma spiked with (a) sildenafil (250 ng/ml) and (b) Toresamide (IS) (250 ng/ml)	121
19	Calibration curve of SILD in human plasma	123
20	Mean plasma concentration-time profiles of SILD after sublingual administration of F4, S7 and oral administration of the commercial product to human volunteers	129

Abstract

Sildenafil (SILD) was approved by the U.S. Food and Drug Adminstration (FDA) for pulmonary arterial hypertension (PAH) treatment. Sublingual tablets (STs) of SILD was supposed to overcome SILD first-pass effect consequently enhancing oral bioavailability, achieving rapid onset of action and minimizing oral side effects, together with being non-invasive and of good patient compliance. The oral cavity is water rich environment which requires adequate aqueous drug solubility. However SILD is of poor aqueous solubility that necessities enhancement before tablet preparation. This was planned to be achieved by two comparative techniques; solid dispersion and freeze drying technique.

In Solid dispersion technique (SDT), polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), polyethylene glycol 8000 (PEG 8000) and poloxamer 188 were used as solid polymers for preparation of SILD solid dispersion (SDs) by fusion method. The SDs that showed the optimum results were incorporated into ST by direct compression using two superdisintegrants (Pharmaburst and sodium starch glycolate) in different concentrations. Results showed that SD enhanced SILD solubility and dissolution in comparison with their physical mixture (PX) counterparts and plain drug. SDs containing poloxamer 188 and PEG 8000 showed the best evaluation results and therefore were selected for tablet compression. The physicochemical and solid state properties, as well as the dissolution behavior of the tablets were evaluated. The results revealed