Assessment of Working Memory in Normal Children and Children Who Stutter

Thesis submitted
For fulfillment of Master degree in Phoniatrics
By

Aisha Fawzy Abdel Hady (M.B., B.CH)

Under supervision of

Prof. Dr /Hazem Mohammed Aboul Oyoun

Professor of E.N.T Faculty of medicine Cairo University

Prof. Dr / Hossam Mohammed El Dessouky

Professor of Phoniatrics Faculty of medicine Cairo University

Dr. /Sahar Saad Shohdi

Assisstant professor of Phoniatrics Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2009

Acknowledgment

First and foremost thanks to my God, the most beneficial and merciful.

I would like to express my deepest gratitude and appreciation to Prof. Dr. Hazem Aboul Oyoun, Prof. of ENT, Faculty of medicine, Cairo University, for his kind help.

I would like also to express my deepest gratitude and great thanks to Prof. Dr. Hossam Mohammed El Dessouky, Prof. of Phoniatrics, Faculty of medicine, Cairo University for his care, help and extreme support.

I am very much indebted to Dr. Sahar Saad Shohdi. Assistant Prof of phoniatrics, Faculty of medicine, Cairo University for her help, valuable guidance and supervision throughout this work.

I also extend my deep thanks to my colleagues at phoniatric unit for their generous help and continuous support throughout this work.

To my small loveley family and to my kind parentes who supported me in sorrow & happiness, thank you for your care & help.

Abstract

The aim of this study is to assess working memory abilities in normal children and Children Who Stutter (CWS), 30 normal children and 30 children who stutter were subjected to Working Memory (WM) recall abilities test and nonword repetition task. The WM recall tests included recall of word sets different in length and rhyming, digit span, letter sequences and picture-number test. The nonword repetition test was used to assess phonological encoding through measuring number of phonological errors produced on repeating the task, and to measure the reaction time. The children who stutter (CWS) had performed poorly on some working memory tests. Conclusion: Children who stutter may have diminished ability to recall nonwords and some of working memory abilities and that further investigation into this possibility may shed light on the emergence and characteristics of childhood stuttering.

Key words: working memory, children who stutter nonword repetition, phonological encoding, phonological errors, reaction time.

Table of contents

Acknowledgment	. 1
Abstract2	
Lists of Tables	
List of Figures	
List of Abbreviations	
Chapter 1: Introduction & aim of the work	3
Chapter 2: Review of literature	8
Definitions and onset of stuttering	.8
Theories of stuttering	13
Working memory	38
Relation between working memory and children with stuttering	45
Chapter 3: Subjects & Methods	51
Chapter 4: Analysis & Results6	5 2
Chapter 5: Discussion9) 4
Chapter 6: Conclusions & Recommendations10)9
Chapter 7: Summary113	3
References1 1	7
Appendices14	2
الملخص العربي	

List of Tables		
Table Title	Table No	Page No
IQ and memory parameters in controls and stutterers	1	63
Illinois parameters in controls and stutterers	2	64
Total language scores in controls and stutterers 3		65
The correlation between severity of stuttering and reaction time of bi and trisyllabic nonwords 4 66		66
Recall parameters in controls and stutterers	5	68
The correlation between age of controls and working memory recall tasks 6		70
The correlation between age of stutterers and working memory recall tasks 7		74
Comparison between recall of short word sets and recall of long word sets among controls 8		79
Comparison between recall of dissimilar word sets and recall of similar word sets among controls 9		80
Comparison between recall of digit span and recall of letter sequences among controls	10	81

Comparison between recall of short word sets and recall of long word sets among stutterers	11	82
Comparison between recall of dissimilar word sets and recall of similar word sets among stutterers	12	83
Comparison between recall of digit span and recall of letter sequences among stutterers	13	84
Number of phonological errors in bisyllabic and trisyllabic nonwords between controls and stutterers. 14 8		85
Number of phonological errors in bisyllabic and trisyllabic nonwords between two control age subgroups 15 8		87
Number of phonological errors in bisyllabic and trisyllabic nonwords between two stuttering age subgroups 16		88
Comparison of number of disfluencies between bisyllabic and trisyllabic nonwords in stutterers 17 89		89
Comparison of number of disfluencies between the two stuttering age subgroups in bi and trisyllabic nonwords 18 90		90
Comparison between number of disfluencies and number of phonological errors in bi and trisyllabic nonwords in stutterers		91
Reaction time of bisyllabic and trisyllabic nonwords in controls and stutterers		92

List of Figures		
Figure Title	Figure No	Page No
Classification of theories of stuttering	1	13
Examples of picture-number test.	2	56
IQ and memory parameters in controls and stutterers	3	63
Illinois parameters in controls and stutterers	4	64
Total language scores in controls and stutterers 5 65		65
Correlation between severity and Bisyllabic reaction time among stutterers	6	67
Correlation between severity and trisyllabic reaction time among stutterers		
Recall parameters in controls and stutterers	8	69
Correlation between age and recall of short word sets among control	9	70
Correlation between age and recall of long word sets among control	10	71
Correlation between age and recall of similar word sets among control		71
Correlation between age and recall of dissimilar word sets among control group 12 7		72
Correlation between age and digit span among control group	13	72

Correlation between age and letter-sequences among control	14	73
Correlation between age and picture-number test among control	15	73
Correlation between age and recall of short word sets among stutterers	16	75
Correlation between age and recall of long word sets among stutterers	17	75
Correlation between age and recall of similar word sets among control	18	76
Correlation between age and recall of dissimilar word sets among stutterers	19	76
Correlation between age and digit span among stutterers	20	77
Correlation between age and letter-sequences among stutterers	21	77
Correlation between age and picture-number test among stutterers	22	78
Comparison between recall of short word sets versus long word sets among controls	23	79
Comparison between recall of dissimilar word sets versus similar word sets in controls	24	80
Comparison between digit span versus letter sequence in controls	25	81
Comparison between recall of short word sets versus long word sets in stutterers	26	82

Comparison between recall of dissimilar word sets versus similar word sets in stutterers 27		83	
Comparison between digit span versus letter sequence in stutterers	28	84	
Comparison of no of phonological errors (during bi and trisyllabic nonwords repetition") between controls and stutterers.	29 86		
Comparison between no. of phonological errors in control and stutterers during bi and trisyllabic nonwords repetition	30 86		
Comparison between no of phonological errors in bi and trisyllabic nonwords between the 2 control age subgroups.	honological		
Comparison between no of phonological errors in bi and trisyllabic nonwords between the 2 stuttering age subgroups	between no of phonological and trisyllabic nonwords between 32 88		
Comparison of number of disfluencies between bi and tri in stutterers	33 89		
Comparison of no of disfluencies between the 2 stuttering age subgroups	34 90		
Comparison between no of disfluencies and no of phonological errors in bi and trisyllabic nonwords in stutterers	parison between no of disfluencies and f phonological errors in bi and trisyllabic 35 91		
Comparison of reaction time in (bi and tri) between control and stutterers.			
Comparison of RT in controls and stutterers between bi and trisyllabic nonwords.	37	93	

List of abbreviations

Abbreviation	Description
BNWR	Bisyllabic nonwords repetition
BRT	Bisyllabic Reaction Time
CA	Chronological age
CRH	Covert Repair Hypotheses
CWS	Children who stutter
CWNS	Children who do not stutter
DAF	Delayed Auditory Feedback
EXPLAN	Acronym stands for execution and planning
IQ	Intelligence Quotient
LRT	Laryngeal reaction time
NWs	Nonwords
PEs	Phonological errors
PLA	Psycholinguistic age
SD	Standard deviation
SM	Sequential memory
SMC	Theories of speech motor control
SPA	Suprasegmental Sentence Plan Alignment

STM	Short Term Memory
PWS	Persons Who Stutter
TNWR	Trisyllabic nonword repetition
TRT	Trisyllabic Reaction Time
WM	Working memory
WS	Word sets

Introduction

Stuttering has been described as a speech motor disorder that disrupts the timing and/or coordination between the respiratory, laryngeal, and vocal tract symptoms of speech (*Van Lieshout et al.*, 2004). Evidence consistent with impairment or disruption to speech motor control in stuttering comes from studies showing differences between People Who Stutter (PWS) and fluent speaking controls in measures of articulation during fluent and disfluent speech (*Logan*, 2003 and Max et al., 2003). For example, investigations using verbal reaction time (RT) paradigms have found PWS to be slower than normally fluent speakers in the initiation of speech movements (*Logan*, 2003). Acoustic and Kinematic analyses of speech in PWS have also provided evidence for difficulties in the timing of speech movements, such as the lip and the jaw (*Kleinow and Smith*, 2000).

However, from a theoretical point of view, research has so far failed to identify a specific locus of deficits in speech motor planning (*Venkatagiri*,2004), muscle command preparation and/or execution (*Petres et al.*, 2000), or in integrating segmental plans with the prosodic requirements of speech (*Packman et al.*, 1996). Some authors have proposed that PWS are less skilled in their speech motor ability, as reflected in normal variation in any motor skill (*Van Liesout et al.*, 2004); therefore, the underlying deficit may not be localizable to a specific component of speech motor control. However, the disrupted motor processes responsible for stuttering may be a consequence of

deficiencies in control or planning process external to speech motor system. One dominant hypothesis of this type is that deficiencies in linguistic processing may provide inadequate or delayed input to speech motor control system, and stuttering results as a consequence of the motor control system attempting to cope with that impoverished input (Bosshardt, 2006 and Newman and Bernstein- Ratner, 2007).

Recently working memory has been implicated in the development of stuttering. Working memory is universally recognized as neurocognitive system that provides temporary storage and processing of incoming information. *Baddeley* (2003) envisioned working memory as a multicomponent neurocognitive system that includes a central executive, visuospatial sketchpad and phonological loop. The phonological loop includes short term storage and rehearsal of incoming verbal information to enable comprehension. Phonological encoding during speech planning involves retrieving phonological material from storage to build articulatory plans (*Levelt*, 1989). Such encoding relies essentially on phonological loop operations. Working memory is considered critical to phonological encoding (*Gathercole and Baddeley*, 1993) and vital to higher level cognition (*Rosen and Engle*, 1997)

One prominent theory which is the covert repair hypothesis of *Postma and Kolk (1993)* assumes that stuttering arises because inefficient or slow phonological encoding leads to an increase in covert repairs to the phonological plan, particularly when the individual is

intent on speaking at a rate exceeding the compliance of the phonological encoding mechanism. Phonological encoding may be delayed for a number of reasons, ranging from delay in higher level semantic activation to inefficiencies in the encoding mechanism itself (*Postma and Kolk, 1993*).

There is also mounting evidence implicating a role for linguistic deficits in the etiology of stuttering (*Hall et al.*, 2007). Some several studies have shown children who stutter tend to perform more poorly on assessments of language, particularly expressive language, than normally fluent controls (*Karniol*, 1995). In addition, studies have shown that stuttering frequency measures of articulatory stability in PWS are related to linguistic variables such as grammatical complexity (*kleinow and Smith*, 2000 and Dayalu et al., 2002) and word frequency (*Anderson*, 2007). The increased levels of linguistic complexity may also be associated with increased motoric complexity or simply increased demands on cognitive resources available to the speech motor control system (*Kent*, 2000).

If stuttering originates because the speech motor control system must deal with asynchronies or inefficiencies in pre-motor linguistic planning, then differences between PWS and controls should be observed in tasks that are sensitive to those linguistic processes. Cognitive models of speech production, such as that proposed by Levelt and colleagues (*Levelt et al.*, 1999), provide a useful framework to consider the linguistic processes that might be deficient in stuttering. A