# Evaluation of serum levels of Vascular Endothelial Growth Factor in patients with cirrhotic and noncirrhotic chronic viral hepatitis (B & C)

#### **Thesis**

Submitted for Partial Fulfillment of a Master Degree inInternal Medicine

By

**Mohammed Nasr Mohammed Elswaify** 

M.B.B.Ch AinShams University 2010

**Under Supervision of** 

### Prof. Dr. Hossam-Eldin Abdul-Aziz

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

#### **Prof. Dr. Tarek Mohammed Yusuf**

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

### Dr. KhaledAmrZaki

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University



Ain Shams University Faculty of Medicine 2015 تقييملمستويات عامل النمو البطاني الوعائي في مصل الدم في المرضى الذين يُعانون من التهاب الكبد الفيروسي المزمن ( B أو C ) المتليف و غير المتليف

رسالة توطئة للحصول على درجة الماجستير فيأمر اضالباطنة العامة

مقدمة من

الطبيب/ محمد نصر محمد السويفي بكالوريسطبجامعةعينشمس (2010)

تحتاشر اف

الأستاذالدكتور/حسام الدين عبد العزيز محمود أستاذأمر إضالباطنة العامة

السادامر اصالباطه العامه كلية الطب - جامعة عينشمس

الأستاذ الدكتور/طارق محمد يوسف

أستاذأمر اضالباطنة العامة كليةالطب - جامعة عينشمس

الدكتور/ خالد عمرو زكي مدر سأمر اضالباطنة العامة كليةالطب- جامعة عينشمس



## Acknowledgment

First of all and foremost, deep thanks to "**ALLAH**"; andthe most merciful for his grace and mercy for giving me the effort to complete this work.

Words are few to speak and do fail to express my deepest gratitude to **Prof. Dr. Hossam Abdul-Aziz**, Professor of Internal Medicine, Faculty of medicine, Ain Shams University, for his continuous attention, follow up and providence of all facilities possible to complete this work, without his honest assistance and abundant patience, this work would have never come to light.

I would like to express my deep appreciation and most gratefulness for Prof.  $Dr.\ Tarek\ Yusuf$ , Professor of Internal Medicine, Ain Shams University, for his constant guidance, experienced advice and great encouragement which has been of the most important and to whom I will always be indebted.

A great appreciation and most gratefulness for *Dr. KhaledAmrZaki*, Lecturer of Internal Medicine, Ain Shams University, for his continuous guidance and, big patience, experienced advice and great encouragement which has been of the most valuable and to whom I will always be indebted

A special thank for  $Dr.\ Nesrin\ ALIMohamed$ , lecturer of clinical patology, Ain Shams University

**Mohammed Nasr Mohammed** 

## **Table of Contents**

| List of Abbreviations          | I   |
|--------------------------------|-----|
| List of Tables                 | IV  |
| List of Figures                | VI  |
| Review of Literature           |     |
| - Chapter (1): Human Liver     | 1   |
| - Chapter (2): Viral Hepatitis | 5   |
| - Chapter (3): Cirrhosis       | 40  |
| - Chapter (4): Angiogenesis    | 57  |
| - Chapter (5): VEGF            | 66  |
| Patients and Methods           | 71  |
| Results                        | 77  |
| Discussion                     | 90  |
| Summary                        | 102 |
| Conclusion                     | 107 |
| References                     | 108 |
| Arabic Summary                 |     |

# List of Abbreviations

| Abb.     | Mean                                   |
|----------|----------------------------------------|
| aFGF     | acidic fibroblast growth<br>factor     |
| AFP      | Alpha feto protein                     |
| ALT      | Alanine Aminotransferase               |
| Ang      | Angiopoietin                           |
| AST      | Aspartate<br>Aminotransferase          |
| AUC      | Area under curve                       |
| bFGF     | basic fibroblast growth<br>factor      |
| CBC      | Complete blood count                   |
| СТ       | Computed Tomography                    |
| EC       | endothelial cell                       |
| ECM      | extracellular matrix                   |
| EDTA     | Ethylene-Diamine-Tetra-<br>Acetic acid |
| ELISA    | Enzyme-linked immunosorbent assay      |
| DNA      | DeoxyriboNucleic Acid                  |
| Focal PN | Focal piecemeal nicrosis               |
| HBcAb    | Hepatitis B virus core antibody        |

| MRCP         | Magnetic Resonance         |
|--------------|----------------------------|
|              | Cholangiopancreatography   |
| N.O          | Nitric oxide               |
| NPR-1        | neuropilin-1               |
| 0.D.         | Optical Density            |
| P value      | Probability value          |
| PAI-1        | plasminogen activator      |
|              | inhibitor-1                |
| PDGF-B       | platelet-derived growth    |
|              | factor-B                   |
| PECAM-1      | platelet endothelial cell  |
|              | adhesion molecule-1        |
| PF-4         | platelet factor 4          |
| PIGF         | placental growth factor    |
| RNA          | RiboNucleic Acid           |
| Rpm          | Revolution per minute      |
| TGF          | transforming growth        |
|              | factor                     |
| TIMP         | tissue inhibitor of matrix |
|              | metalloproteinase          |
| TSP-1        | , thrombospondin-1         |
| uPA          | urokinase plasminogen      |
|              | activator                  |
| V.E-cadherin | vascular endothelial-      |
|              | cadherin                   |
| VEGF         | vascular endothelial       |
|              | growth factor              |
| VEGF-R       | vascular endothelial       |
|              | growth factor receptor     |

## List of Tables

| Table | Title                                   | Page |
|-------|-----------------------------------------|------|
| 1     | Comparison between hepatitis viruses B  | 7    |
|       | and C                                   |      |
| 2     | Scheuer score                           | 28   |
| 3     | METAVIR score                           | 29   |
| 4     | Ishak (modified Knodell) score          | 31   |
| 5     | Significance of liver chemistry tests   | 34   |
| 6     | Nail changes in liver cirrhosis         | 45   |
| 7     | findings typical in cirrhosis           | 47   |
| 8     | Child-Pugh score                        | 51   |
| 9     | Angiogenesis Activators                 | 61   |
| 10    | Angiogesis Inhibitors                   | 62   |
| 11    | Types of VEGF                           | 67   |
| 12    | Median of VEGF (Descriptive Statistics) | 77   |
| 13    | Two group comparison of VEGF            | 79   |
| 13    | (Wilcoxon Rank Sum test)                |      |
| 14    | Comparing all diseased groups (Kruskall | 79   |
|       | Wallis test)                            |      |
| 15    | Serum Transaminases                     | 80   |
| 16    | Prothrombin Time                        | 81   |
| 17    | Serum Bilirubin levels                  | 81   |
| 18    | Alpha-feto Protein                      | 82   |
| 19    | Platelet count                          | 82   |
| 20    | Serum Albumin                           | 83   |
| 21    | Hemoglobin levels                       | 83   |

| Table | Title                                                  | Page |
|-------|--------------------------------------------------------|------|
| 22    | Red blood cell count                                   | 84   |
| 23    | Portal Vein Diameter (Ranked Sperman Correlation test) | 84   |
| 24    | VEGF among ascetic patients in G 3                     | 85   |
| 25    | Spleen (size)                                          | 85   |
| 26    | Gender in regards VEGF                                 | 86   |
| 27    | Child-Pugh's score for G 3 (cirrhotic)                 | 87   |
| 28    | FIB-4 score and Serum VEGF                             | 87   |
| 29    | Diagnostic Validity test (Cirrhotic and C)             | 89   |

# List of Figures

| Figure | Title                        | Page |
|--------|------------------------------|------|
| 1      | Human Liver                  | 1    |
| 2      | Biliary tree                 | 3    |
| 3      | Hepatitis B virus            | 10   |
| 4      | METAVIR score                | 30   |
| 5      | Cirrhotic Liver              | 40   |
| 6      | VEGF Receptors               | 69   |
| 7      | Median values of VEGF levels | 78   |
| 8      | ROC curve analysis           | 88   |

### **Introduction**

The liver is a vital organ present in vertebrates and some other animals. It has a wide range of functions, including detoxification, protein synthesis, and production of

biochemicals for necessary digestion. The liver is necessary for survival; there is currently no way to compensate for the absence of liver function in the long term, although liver new dialysis techniques can be used in the short term.(Cotran, Ramzi et al, 2005).

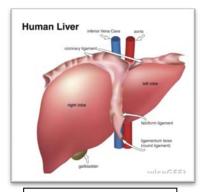



Figure (1): Human Liver Cotran, Ramzi et al, 2005

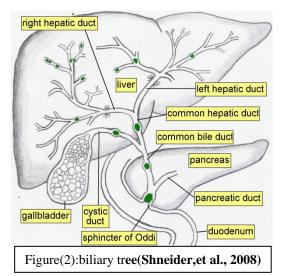
This gland plays a major role in metabolism and has a number of functions in the body, including glycogen storage, decomposition of red blood cells, plasma protein synthesis, hormone production, and detoxification. It lies below the diaphragm in the abdominal-pelvic region of the abdomen. It produces bile, an alkaline compound which aids in digestion via the emulsification of lipids. The liver's highly specialized tissues regulate a wide variety of high-volume biochemical reactions, including the synthesis and breakdown of small and complex molecules, many of which are necessary for normal vital functions. Terminology related to the liver often starts in

hepar- or hepat- from the Greek word for liver, hepar ( $\hbar \pi \alpha \rho$ , root hepat-,  $\dot{\eta}\pi\alpha\tau$ -). (Cotran, Ramzi et al, 2005).

### **Anatomy:**

The liver is a reddish brown organ with four lobes of unequal size and shape. A human liver normally weighs 1.44–1.66 kg (3.2–3.7 lb), and is a soft, pinkish-brown, triangular organ. It is both the largest internal organ (the skin being the largest organ overall) and the largest gland in the human body. The human liver is normally divided into two lobes (left and right), if viewed from the parietal surface; but if observed on the visceral surface it is divided into four lobes with the addition of the caudate and quadrate lobe. There are two major types of cells populate the liver lobes: karat parenchymal and nonparenchymal cells. 80% of the liver volume is occupied by parenchymal cells commonly referred to as hepatocytes. Nonparenchymal cells constitute 40% of the total number of liver cells but only 6.5% of its volume. Sinusoidal hepatic endothelial cells, Kupffer cells and hepatic stellate cells are some of the non-parenchymal cells that line the liver sinusoid. (Kmieć Z, 2001)

#### Blood and Biliary flow


The liver gets a dual blood supply from the hepatic portal vein and hepatic arteries. Supplying approximately 75% of the liver's

blood supply, the hepatic portal vein carries venous blood drained from the spleen, gastrointestinal tract, and its associated organs. The hepatic arteries supply arterial blood to the liver, accounting for the remainder of its blood flow. Oxygen is provided from both sources; approximately half of the liver's oxygen demand is met by the hepatic portal vein, and half is met by the hepatic arteries. Blood flows through the liver sinusoids and empties into the central vein of each lobule. The central veins coalesce into hepatic veins, which leave the liver. (Shneider, et al., 2008).

#### The biliary tree

The term biliary tree is derived from the arboreal branches of the bile ducts. The bile produced in the liver is collected in bile canaliculi, which merge to form bile ducts. Within the liver, these ducts are called intrahepatic (within the liver) bile ducts,

and once they exit the liver considered they are extrahepatic (outside the liver). The intrahepatic ducts eventually drain into the right and left hepatic ducts, which merge to form the common hepatic duct. The cystic duct from the



gallbladder joins with the common hepatic duct to form the common bile duct. Bile either drains directly into the duodenum via the common bile duct, or is temporarily stored in the gallbladder via the cystic duct. The common bile duct and the pancreatic duct enter the second part of the duodenum together at the ampulla of Vater. (Shneider, et al., 2008).

### **Physiology:**

The various functions of the liver are carried out by the liver cells or hepatocytes. Currently, there is no artificial organ or device capable of emulating all the functions of the liver. Some functions can be emulated by liver dialysis, an experimental treatment for liver failure. The liver is thought to be responsible for up to 500 separate functions, usually in combination with other systems and organs. (Maton, et al., 1993).