

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications Engineering Department

Timing and frequency offset correction of received OFDM symbols in advanced communication systems.

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by Marriam Abou Baker Mohammed

B.Sc. of Electrical Engineering (Electronics and Communications Engineering) Ain Shams University, 2007

Supervised By
Prof. Dr. ABDELHALIEM ZEKRY
Prof.Dr. ISMAIL MOHAMMED HAFEZ.

Cairo, 2014

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

EXAMINERS COMMITTEE

Thesis: Timing and frequency offset correction of received OFDM

symbols in advanced communication systems.

Degree: Master of Science in Electrical Engineering

Name: Marriam Abou Baker Mohammed

<u>Title, Name and Affiliation</u>	<u>Signature</u>
1.prof.Abd El Halim Zekry Electronics and communications Eng. Dept. Ain Shams university , cairo, Egypt.	••••••
2.Prof. Esmaeel Mohammed Hafez Electronics and communications Eng. Dept. Ain Shams university , cairo, Egypt.	•••••••••••••••••••••••••••••••••••••••
3.prof. Talaat Adl El Latif El garf Electronics and communications Eng. Dept. Tenth of Ramadan university, cairo, Egypt.	••••••
4.prof. Wagdy Refaat Anis Electronics and communications Eng. Dept. Ain Shams university , cairo, Egypt.	••••••••

Date:13/8/2014

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master

of Science in Electrical Engineering (Electronics and Communications

Engineering).

The work included in this thesis was carried out by the author at the Electronics

and Communications Engineering Department, Faculty of Engineering, Ain

Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other

university or institution.

Data: 13/8/2014

Name: Marriam Abou Baker Mohammed

i

Curriculum Vitae

Name of the researcher: Marriam Abou Baker Mohammed Ali

Date of Birth: 26 of December 1985

Place of Birth: kingdom of soudi Arabia

First University Degree: B.Sc. in Electrical Engineering

Department: Electronics and Communications

Faculty: Faculty of Engineering

Name of University: Ain Shams University

Date of Degree: July 2007

Signature:

Date: 13/8/2014

First and last, there are no words that can express my deep thanks to the GOD. Thank you very much my GOD.

ACKNOWLEDGEMENT

I would like to state my deep thanks to **Prof.Dr. ABDELHALIEM ZEKRY** for his guidance throughout my entire work and for providing me an excellent opportunity to get a great theoretical and practical experience in Orthogonal frequency division multiplexing which is the most common digital modulation technique in advanced communication systems such as ADSL, WLAN, Wi MAX, he also provided me with famous and excellent references and papers, I owe to him being a successful engineer by teaching me free thinking, solving problems with unusual way; and by providing a good example for being a professor and a scientist. I really can't find words to thank him, **Dr A Zekry** worth more than words to thank him.

I'm very grateful **to Dr. Ismail Mhammed hafez** who was a good support for me.

I found it also an opportunity to give my thanks to **Dr. Gihan Gomaa** for her assistance and guidance through this work, her encouragement and her fruitful discussions with me.

I am also thankful for **Dr. Hossam Labeeb**, **eng. Alaa Salah** and eng. Aia Sadk for their assistance and kindness.

I would like to dedicate this work for my family specially my husband who supported me through years of study and research, also I want to dedicate this research for my father soul .

And most importantly, I would like to thank Allah, for the power and patience He gave me to finish this work, which I hope to be useful for others.

ABSTRACT

Marriam Abou Baker Mohammed

Timing and frequency offset correction of received OFDM symbols in advanced communication systems.

Master of Science dissertation, Ain Shams University, 2013

This thesis presents a study of how to correct timing and frequency offset of orthogonal division multiplexing (OFDM). OFDM is considered the most common digital modulation technique in advanced communication systems such as ADSL, WLAN and Wi- MAX. OFDM systems have a great immunity against multipath fading, noise and any delayed channels.

Timing errors during transmission complicates the process of determining the start of the received OFDM symbol. In addition to some sort of phase rotation according to Fourier transform which translates the time delay into phase shift. Beside timing errors due to transmission, OFDM symbols may suffers from carrier frequency offsets due to multipath fading. Some old methods are used to solve the problem of synchronization such as 'data aided'.

This method uses predetermined training symbols which reduce the efficiency of transmitted channels due to the reduction of the part of band width dedicated for data transmission. A new method for synchronization depends on the cyclic prefix (CP) which is the process of copying the last L part of transmitted OFDM symbols to the beginning of OFDM symbol. CP represents a percentage of OFDM symbol. The effect of different percentages of CP in the synchronization process is tested.

MATLAB SIMULINK and HDL code generation is used for OFDM system simulation and HDL code generation.

Key words: OFDM (Orthogonal frequency division multiplexing) – CP (Cyclic prefix)- Timing errors –MTLAB-MATLAB HDL coder-timing synchronization.

Tables of contents

Tables of contents	V
List of abbreviations	X
List of symbols	xii
List of figures	xiii
List of tables	xvii
Introduction	1
Chapter 1	4
Basics of multicarrier transmission.	4
Introduction	4
1.1 OFDM technique in IEEE standards (Institute of Electrical	
and Electronics Engineers)	8
1.2 OFDM and IEEE802.11a.	9
1.3 OFDM and IEEE 802.16a.	10
IEEE 802.16c 2002.	10
1.2.4 IEEE 802.16 2004.	11
1.3 Frequency Division Multiplexing (FDM) versus Orthogonal	
frequency Division Multiplexing (OFDM)	12
1.4 OFDM Basics	16
1.4.1 The cyclic prefix.	18
1.4.2 The main advantages and disadvantages	
of cyclic prefix.	21
1.5 Circular Convolution and frequency domain	23
1.6 Implementation of multicarrier modulation	
in OFDM systems	25
Chapter2	27

OFDM System analysis and design	27
2.1 Introduction.	27
2.2 OFDM Symbols	27
2.3 OFDM System.	28
2.4 OFDM System in details	30
2.4.1Signal Mapper Operation	30
2.4.2 Coding	31
2.4.3 Pilot Subcarriers	31
2.4.4 Frequency to time domain converter (IFFT)	33
2.4.5 Cyclic Extension and Shaping	33
2.4.6 Transmission Channels	34
2.5 Optimum Signal to Noise Ratio (SNR) in presence	
of Timing Errors	34
2.6 Time Dispersion Estimation For Adaptive OFDM Systems	36
2.7 Methods for OFDM Synchronization	37
2.7.1 OFDM Synchronization Based on Devoting	
Specific Training Symbols	38
2.7.2 Synchronization Frame Structure	41
2.7.2.a Rough Timing Recovery Method	43
2.7.2.b Steps of Rough Timing Recovery Method	44
2.7.2.c Advantages of Using Frame Synchronization Method	45
2.7.3 Synchronization Techniques in the Continuous Mode	
Burst Packet Mode Transmission Systems	46
2.7.3.a Coarse Symbol Timing in Continuous	
Transmission Mode	47
2.7.3.b Fine Symbol Timing in Continuous	
Transmission Mode	47

2.7.4 Symbol Timing Synchronization in Burst Packet Mode
2.8 Frequency Offset Estimation.
2.8.1 Frequency Offset Estimation Using Specific
Training Symbols
2.8.2 Frequency Offset Estimation in Continuous Mode and
Burst Packet Mode
2.8.2.a Integer Carrier Frequency Offset.
2.8.2.b Coarse Decimal Carrier Frequency Offset
2.8.2.c Fine Decimal Fine Frequency Offset
2.8.2.d Carrier Frequency Offset Control Mode
2.8.2.e Carrier Frequency Offset in Burst Packet
Transmission Mode
2.9Frequency Offset in General
Chapter 3
OFDM System Implementation and Results
3.1 Introduction
3.2 Building OFDM Transmitter
3.3 Building ODFM Receiver
3.4 Results of Simulation.
3.4.1Constellation Diagram of QPSK Modulator
3.4.2 Correct Removing of Cyclic Prefix
3.4.3 The Transmitted OFDM Signals
3.5 The Effect of Delayed Channel on
The received OFDM Symbols
3.6 The Effect of Frequency Offsets on
the Received OFDM Symbols
3.7 The Effect of Different Cyclic Prefix Length on

The Correlation Results	77
3.8 The VHDL Code of OFDM Transceiver	80
3.9 The VHDL Code for QPSK Demodulator	85
3.9.1 HDL Code for QPSK demodulator	85
3.9.2 HDL Code for QPSK Modulator.	87
3.9.3 OFDM System Package.	88
3.9.4 OFDM System (Transceiver).	88
Chapter 4.	95
Conclusion and Future work	95
Appendix A	97
Basic Mathematics Used in OFDM System	97
A.1 Introduction	97
A.2 Fourier Transforms and its inverse	97
A.2.1 Fourier Transforms Properties Under	
Different Cases of f(t).	100
A.2.2 Fourier Transform is Complex if f(t) is Real in General	100
A.2.3 Fourier Transform is Real and Even if f(t) is Even	100
A.2.4 Fourier Transform is Imaginary and Odd if f(t) is Odd	101
A.2.5 Fourier Transform is Complex if f(t) is Imaginary	101
A.2.6 Fourier Transform is Imaginary and	
Even if f(t) is Imaginary and Even	102
A.2.7 Fourier Transform is Real and Odd if f(t) is	
Imaginary and Odd	103
A.3 General Properties of Fourier Transform	103
A.3.1 Linearity.	103
A.3.2 Symmetry.	104
A.3.3 Time Scaling.	104

A.3.4 Time Shifting.	105
A.3.5 Frequency shifting.	105
A.4 QPSK Modulation	105
A.5 Cross Correlation Function.	111
A.6 Signal Parameter Estimation.	112
A.7 The Likelihood function	113
A.8 Maximum Likelihood Carrier Phase Estimation	114
References	115

List of Abbreviations

WBMSC Wireless Broad Band Multimedia Communication System

Mbps Mega Bits Per Second

ISI Inter Symbol Interference

OFDM Orthogonal Frequency Division Multiplexing

FDM Frequency Division Multiplexing

IEEE Institute of Electrical and Electronics Engineering

WLAN Wireless Local Area Network

MBWA Mobile Broadband Wireless Access

GHZ Giga hertz

ADSL Asymmetric Digital Subcarrier Line

DAB Digital Audio Broadcasting

MAC Media Access Control

PHY Physical layer

PLCP Physical Layer Convergence Protocol

PSDU Payload

BPSK Binary Phase Shift Keying

WMAN Wireless Metropolitan Area Network

BWA Broadband Wireless Access

MIMO Multiple Input Multiple Output

QoS Quality of Service

LOS Line of Site

NLOS Non Line Of Site

QPSK Quadrature Phase Shift Keying

QAM Quadrature Amplitude Modulation

FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

CP Cyclic Prefix

RF Radio Frequency

TDMA Time Division Multiple Access

FDMA Frequency Division Multiple Access

CDMA Code Division Multiple Access

OFDMA Orthogonal Frequency Division Multiple Access

DFT Discrete Fourier Transform

BER Bit Error Rate

ICI Inter Carrier Interference

ZP Zero Prefix

WiMAX Worldwide Interoperability for Microwave Access

SNR Signal to Noise Ratio

CIR Channel Impulse Response

PN Pseudo Number

DAB Digital Audio Broadcasting

DVB-T Digital Video Broadcasting

MLE Maximum Likelihood Estimation

AWGN Additive White Gaussian Noise

DA Data Aided

NDA Non Data Aided

CFO Carrier Frequency Offset

HDL Hardware Description Language

FPGA Field Programmable Gate Array

RS Reed Solomon

List of symbols

Ts Sampling time

t Channel delay spread

L Number of lower rate sub-streams

Bc Coherent bandwidth

Tb Original bit rate

B Bandwidth of single carrier transmission

Tg Guard band time interval

h Channel impulse response

 σ^2 Noise power

N Total number of points processed by DFT or IDFT

n Sample index of carrier

k Number of cycles of N points

R High data rate stream

τ Timing offset

Tm Maximum channel delay spread

Ng Number of samples in guard interval

rm The received OFDM signal

C(n) Cross correlation values

D The amount of delay through transmission

P(n) The received signal energy

M(n) Timing metric

δf Carrier frequency offset

 Δf Frequency spacing

f(t) Signal in time domain

F(f) Signal in frequency domain

fs Sampling frequency

θ Phase shift