

RESEARCH ON MEMRISTIVE- AND MEMCAPACITIVE-BASED GATE-LESS MEMORY ARRAYS

By

Ahmed Adel Mohamed Emara Kassem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

RESEARCH ON MEMRISTIVE- AND MEMCAPACITIVE-BASED GATE-LESS MEMORY ARRAYS

By

Ahmed Adel Mohamed Emara Kassem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Dr. Hossam A. H. Dr. Mohamed M. Aboudina Fahmy

Professor

Electronics and Communications Engineering
Faculty of Engineering, Cairo University

Associate Professor

Electronics and Communications Engineering
Faculty of Engineering, Cairo University

RESEARCH ON MEMRISTIVE- AND MEMCAPACITIVE-BASED GATE-LESS MEMORY ARRAYS

By

Ahmed Adel Mohamed Emara Kassem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Dr. Hossam A. H. Fahmy, Thesis Main Advisor

Dr. Mohamed M. Aboudina, Advisor

Prof. Dr. Nadia H. Rafat, Internal Examiner

Prof. Dr. Mohamed A. Dessouky, External Examiner (Ain Shams University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Ahmed Adel Mohamed

Emara Kassem

Date of Birth: 28/02/1992 **Nationality:** Egyptian

E-mail: a emara@outlook.com

Phone: 201004220496

Address: 1A Omar ibn ElKhattab St.,

Dokki,

Giza, Egypt.

Registration Date: 01/09/2014

Awarding Date: 2017

Degree: Master of Science

Department: Electronics and Communica-

tions Engineering

Supervisors:

Prof. Dr. Hossam A. H.

Fahmy

Dr. Mohamed M. Aboudina

Examiners:

Prof. Dr. Hossam A. H. (Thesis Main Advisor)

Fahmy

Dr. Mohamed M. Aboudina (Advisor)

Prof. Dr. Nadia H. Rafat (Internal Examiner)
Prof. Dr. Mohamed A. (External Examiner)

Dessouky

TITLE OF THESIS:

Research on Memristive- and Memcapacitive-based Gate-less Memory Arrays

Kev Words:

Memristor; Memcapacitor; Gate-less memory array; Sneak paths

Summary:

This work aims to explore the properties of emerging devices as memristors and memcapacitors. The use of these devices as memory cells in memory applications is investigated as well as the techniques used for information extraction. The work helps to better solve the problems of sneak paths in gate-less arrays, coupling capacitance between selection bars and non-uniformity of data distribution in the array. It also gives a guide to solving selection bar resistance effect for future work.

Acknowledgments

I would like to express my deep gratefulness to my supervisors Dr Hossam Fahmy and Dr Mohamed Aboudina who gave me academic help and moral support. They were very tolerant concerning my slow progress during my military service.

I would like to thank Dr Yasmine Fahmy for her academic help in our work concerning communication techniques.

I would like also to thank the teaching assistants of the EECE department: Amr Saad, Khaled Helal, Sameh Atteya, Tarek Khedr, and Ahmed ElShafiy who were never hesitant to give help.

Dedication

То	
my parents:	
Dr Adel	
and	
Dr Neamat,	
my sister:	
Ayah,	
and	
my brothers:	
Abdel Rahman,	
and	

Ibrahim.

Table of Contents

A	cknow	eledgments	i
De	edicat	ion	iii
Ta	ble of	f Contents	v
Li	st of T	Tables	vii
Li	st of I	Figures	ix
Li	st of S	Symbols and Abbreviations	xi
Li	st of I	Publications	XV
Al	bstrac	t	kvii
1	Men	nristors	1
	1.1	Introduction about memristors	1
		1.1.1 Memristive systems	3
	1.2	Discovery of the memristor	3
		1.2.1 Applying the memristive system definition to existing memory	
		devices	4
	1.3	Modeling	5
		1.3.1 Mathematical modeling	5
		1.3.1.1 The linear dopant drift model	5
		1.3.1.2 Non-linear models	6
		1.3.2 Verilog-A modeling	7
	1.4	Conclusion	7
2	Men	ncapacitors and meminductors	9
	2.1	Introduction about memcapacitors and meminductors	9
	2.2	Existence of memcapacitive and meminductive systems	11
	2.3	Higher-order non-linear circuit elements	11
	2.4	Conclusion	13

3	Mer	mcapacitor-based array	15	
	3.1	Memcapacitor as a memory cell	15	
	3.2	Crossbar memory array	21	
		3.2.1 Reading process		
		3.2.2 Parasitic Effects	25	
		3.2.2.1 Capacitive coupling between adjacent bars	25	
		3.2.2.2 Parasitic resistance of the bars	26	
		3.2.3 Writing Process	28	
	3.3	Simulation results	31	
	3.4	Conclusion	31	
4	Opt	Optimizing threshold 33		
	4.1	Threshold Analysis	33	
	4.2	Adaptive threshold	37	
	4.3	Reading Circuit	38	
	4.4	Simulation results	41	
		4.4.1 Testing various 0/1 distributions and different memristor models .	41	
		4.4.2 Reading circuit	43	
	4.5	Conclusion	45	
5	Single-measurement method 4			
	5.1	Sensitivity of three-measurements method	47	
	5.2	Proposed Technique	48	
	5.3	Simulation Results	49	
	5.4	Conclusion	50	
6	Disc	cussion and Future work	51	
	6.1	Recent sneak-paths solving methods		
	6.2	Possible solution for bar resistance problem	56	
		6.2.1 Time/Frequency diversity	56	
		6.2.2 Space diversity	57	
	6.3	Conclusion	57	
Re	feren	nces	59	
A	Veri	ilog-A Linear dopant drift memristor model	65	
В	MA	TLAB code for memory array solution	67	
Ar	abic	Abstract	1	

List of Tables

3.1	Reading process for different array parameters against proposed threshold.	30
3.2	Settling time of read process for different array parameters	31
4.1	Simulation results for the values of R_t after performing the multiport readout technique for different cell values and different 0/1 cell densities. The values of the fixed and adaptive thresholds are also shown where the failing thresholds are marked with '*'. The values of model 4 are normalized with respect to C_0	42
5.1	The orders of variables and measurements	48
5.2	Results from the readout method in [44] and the proposed method	50

List of Figures

1.1 1.2 1.3	Four fundamental circuit elements [2]	2 3 6
2.1 2.2	Relation between circuit variables in memelements [24]	10 12
3.1	The elastic membrane memcapacitor [30]	18
3.2	Simulation results of the application of voltage pulse of duration 5ns to	20
3.2	the memcapacitor	20
3.3	the memcapacitor	21
	red	22
3.4	The 3D view for crossbar structure after connecting the terminals of the intended cell between n_1 and n_2 , shorting all the unselected columns and connecting them to node n_3 and shorting all the unselected rows and connecting them to node n_4 is shown on the left. The top view of the array showing cells contributing to each lumped impedance is shown in the mid-	
3.5	dle. The equivalent impedance network on the right	24
	bars	27
3.6	A voltage pulse is applied to the circuit to sense the capacitive reactance	20
3.7	between the intended terminals (e.g. n_1 and n_2) of the array	28 29
4.1	Graph showing the effect of p on the upper and lower boundaries of the fraction of 1's x in the array on the left, and the binary values for R_t as well as the threshold at the value of p that maximizes the range of x versus	•
	the fraction of 1's x on the right	36

4.1	Graph showing the effect of p on the upper and lower boundaries of the	
	fraction of 1's x in the array on the left, and the binary values for R_t as	
	well as the threshold at the value of p that maximizes the range of x versus	
	the fraction of 1's x on the right	37
4.2	The adaptive threshold versus the density of 1's x	39
4.3	Circuit reading the resistance between n_1 and n_2 ($R_{1,2}$)	41
4.4	CMOS implementation of the two opamps in the circuit in Fig. 4.3	43
4.5	Results of CMOS implementation of the circuit in 0.3. The threshold is	
	shown with both output signals in dashed red and has value of 977mV	
	which is 13mV (calculated from eq. 3.20) above the DC value of the	
	output signal	44
4.5	Results of CMOS implementation of the circuit in 0.3. The threshold is	
	shown with both output signals in dashed red and has value of 977mV	
	which is 13mV (calculated from eq. 3.20) above the DC value of the	
	output signal	45
5.1	Circuit equivalent of the array shown in Fig. 3.4 in Chapter 3 when mea-	
	suring R_{12}	48
5.2	The proposed technique applied to the circuit equivalent of the crossbar	
	memory array	49
6.1	Top view of the equivalent circuit of the crossbar array showing line re-	
	sistances where memory cells are the interconnections at the intersections	
	of the upper bars and lower bars shown in red	52
6.2	Bitmap from [52] of the voltage delivered to each cell according to its	
	position normalized to the applied voltage	53
6.3	Circuit equivalent of the method of [53]	54
6.4	Illustration of the method of [54]	55
6.5	Illustration of the method of [55]	55
6.6	Taking several measurement of the same cell through different paths	57
B.1	The parameters used in the code taken from [52]	67

List of Symbols and Abbreviations

Symbols	Description
v	Voltage.
i	Current.
q	Charge.
ϕ	Magnetic flux.
R	Resistance.
G	Conductance.
C	Capacitance.
L	Inductance.
t	Time.
M	Memristance.
W	Memductance.
R_{on}	Low resistance state.
R_{off}	High resistance state.
D	Device width.
w	Doped region width.
$\mu_{ u}$	Dopants mobility.
σ	Charge time integral.
ho	Magnetic flux time integral
α	Device voltage order.
β	Device current order.
arvarepsilon	Device complexity metric.
Z	Impedance.
U	Potential energy.
F	Force.