STUDY OF IMMUNOGLOBULIN LIKE TRANSCRIPT 3 (ILT3) EXPRESSION IN ACUTE MYELOID LEUKEMIA

Thesis

For Partial Fulfillment of Master Degree of Clinical and Chemical Pathology

By

Reham Abd Al-Fattah Moussa

M.B., B.Ch Faculty of Medicine - Cairo University

Under Supervision Of

Prof. Nevine Ahmed Kassim

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Prof. Soha Raouf Youssef

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Deena Samir Mohamed Eissa

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Tist of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	v
List of Figures	
Introduction	1
Aim of the work	3
Review of Literature	
• Chapter (1): Acute Myeloid Leukemia	4
• Chapter (2): ILT3 (CD85K)	
Subjects and Methods	54
Results	63
Discussion	98
Summary	107
Recommendations	112
References	113
Arabic Summary	

List of Abbreviations

AML Acute myeloid leukemia

APCs Non-professional antigen presenting cells

APL Acute promyelocytic leukemia

ATRA All-trans retinoic acid

B19V Parvovirus B19

BM..... Bone marrow

CBC Complete blood count

CBF Core binding factor

CR Complete remission

CTL Cytotoxic T-lymphocyte

DCs Dendritic cells

DIC Disseminated intravascular coagulopathy

FAB French-American-British

FCM Flow cytometry

FcyRIII Fc portion of IgG

FITC Fluorescein isothiocyanate

G-CSF Granulocyte colony stimulating factor

GM-CSF Granulocyte-macrophage colony stimulating factor

GVL Graft-versus leukemia

HLA Human leukocytic antigen

HSC Hematopoietic stem cells

IFN- γ Interferon- γ

IHC Immunohistochemistry

ILT3 Immunoglobulin Like Transcript 3

List of Abbreviations (Cont ...)

ILTs Immunoglobulin-like transcripts

ITAM Immunoreceptor tyrosine-based activation motif

ITIM Immunoreceptor tyrosine-based inhibitory

motifs

Kappa index

MDCs Monocytoid dendritic cells

MDS Myelodysplastic syndrome

MIC Morphologic-Immunologic Cytogenetic

MoAbs Monoclonal antibodies

MPO Myeloperoxidase

MRD Minimal Residual Disease

NSE Non-specific esterase

PAS PeriodicAcidSchiff

PNH paroxysmal nocturnal hemoglobinuria

r Pearson's correlation coefficient

RAR Retinoic acid receptor

RBC Red blood cells

ROC Receiver operator characteristics

rs Spearman's rank correlation coefficient

RT-PCR Reverse transcriptase-polymerase chain reaction

SBB Sudan Black B

SPSS Statistical Program for Social Science

t-AML AML transformation

TdT) Terminal deoxynucleotidyltransferase

TLC The total leucocytic count

List of Abbreviations (Cont...)

TNFs Tumor necrosis factors

WBCs White blood cells

WHO World Health Organization

x²..... Chi-square

Tist of Tables

Table No.	Title Page	No.
Table (1):	Morphologic (FAB) classification of AML	16
Table (2):	MIC classification of AML: showing the association of morphology (FAB) with cyto-genetics and immune-phenotyping.	18
Table (3) :	WHO Classification of AML and Related Neoplasms)	19
Table (4):	Shows the cytochemistry for AML.	27
Table (5):	Panel of MoAbs to differentiate AML and ALL	28
Table (6) :	Immunophenotypic markers of AML	29
Table (7):	Clinical correlates of frequent cytogenetic abnormalities observed in AML.	31
Table (8) :	Prognostic factors in acute myeloid leukemia.	35
Table (9):	Comparison between patients and control as regard demographic data.	63
Table. (10):	Distribution of the patients according to different clinical sub-groups.	64
Table (11):	Comparison between patients and control as regard CBC and BM findings	66
Table (12):	Cytochemical study of the patients' group by non specific esterase stain.	69
Table (13):	Percent of blast cells expressing CD14 among patients group.	71
Table (14):	Percent of blast cells expressing ILT3 among patients group.	71
Table (15):	Descriptive immunophenotype data of the patients group.	72
Fig. (16):	ILT3 expression in patients and controls on different cellular populations.	73
Fig. (17):	Comparison between patients and control as regards expression of ILT3 on blast cells (percentage, absolute count and Mn Ix)	74

Tist of Tables (Cont...)

Table No.	Title	Page No.
Fig. (18):	Comparison between patients and control as a expression of ILT3 on monocyte (percentage, a count and Mn Ix)	bsolute
Fig. (19):	Comparison between patients and control as a expression of ILT3 on granulocytes (percente, a count and Mn Ix)	bselute
Table (20):	Correlation Study between percent of Blass expressing ILT3 and other diagnostic parameters patients' groups Using Pearson Correlation Coeffeet	s in the fficient
Table (21):	Correlation Study between absolute count and intensity of Blast cells expressing ILT3 and diagnostic parameters in the patients' groups Using I Correlation Coefficient Test	l other Pearson
Table (22):	Correlation Study between ILT3 expression of monocytes (percent, absolute count and MnIx) to diagnostic parameters in the patients' groups Pearson Correlation Coefficient Test	o other Using
Table (23):	Correlation Study between percent of Blass expressing CD14 to other diagnostic parameters patients' groups Using Pearson Correlation Coeffest	in the fficient
Table (24):	Correlation Study between CD14 expression of monocytes (percent, absolute count and MnIx) patients' groups Using Pearson Correlation Coe Test	in the fficient
Table (25):	Diagnostic Performance of percent of blast expressing ILT3 in discrimination between paties controls	nts and
Table (26):	Diagnostic Performance of absolute countof bla expressing ILT3 in discrimination between paties controls	nts and
Table (27):	Diagnostic Performance of mean intensity expression on blast cells in discrimination b patients and controls	etween

Tist of Tables (Cont...)

Table No.	Title	Page T	lo.
Table (28):	Diagnostic performance of percent of ILT Blast cells in discriminating monocytic leufrom non monocytic leukemia.	ıkemia	95
Table (29):	Comparing the Diagnostic Performance of percent of the two and CD14 +ve in Discrimination between most and non monocytic leukemia.	onocytic	96
Table (30):	Kappa test between ILT3 expression on blast ce other diagnostic parameters		97

List of Figures

Fig. M	o. Title Page No	-
Fig. (1):	Several mutations are necessary for the development of acute myeloid leukemia (AML)	12
Fig. (2):	Morphology of blast cells in different AML subtypes in BM aspirate smears	26
Fig. (3):	Treatment options in AML	36
Fig. (4):	ILT/LIR/MIR receptor family	42
Fig. (5):	Cellular distribution of ILT/LIR/MIR isotypes. Distinct isotypes are differentially expressed on lymphocytes	44
Fig. (6):	Mechanisms underlying CD8 ⁺ Treg suppression	46
Fig. (7):	Immunohistochemical staining of macrophages with anti-ILT3 antibodies in a lymph node from a patient with metastatic pancreas carcinoma	52
Fig. (8):	Distribution of the patients according to different clinical sub-groups.	65
Fig. (9):	Comparison between patients and control as regard blast in BM	67
Fig. (10):	Distribution of patients into monocytic leukemia and non monocytic leukemia.	68
Fig. (11):	Results of Non Specific esterase staining among the patients' group.	69
Fig. (12):	Percent of blast cells expressing ILT3 in patients and controls (Boxplot).	75
Fig. (13):	Absolute count of blastcells expressing ILT3 in patients and controls.	75
Fig. (14):	Mean intensity of ILT3 expression on Blast cells in patients and controls (Boxplot).	75
Fig. (15):	Percent of monocytes expressing ILT3 in patients and controls (Boxplot).	77
Fig. (16):	Absolute count of monocytesexpressing ILT3 in patients and controls.	77

List of Figures

Fig. M	o. Title Pag	ge No.
Fig. (17):	Mean intensity of ILT3 expression on monocytes patients and controls (Boxplot).	
Fig. (18):	Percent of granulocytes expressing ILT3 in patients controls (Boxplot).	
Fig. (19):	Absolute count of granulocytes expressing ILT3 in pat and controls.	
Fig. (20):	Mean intensity of ILT3 expression on granulocytes patients and controls. (Boxplot).	
Fig. (21):	Significant positive correlation between percent of Blast expressing ILT3 and monocytyes in PB	
Fig. (22):	Significant negative correlation between percent of Blast expressing ILT3 and percentof Blast cells expressing CD13	
Fig. (23):	Significant negative correlation between percent of Blast expressing ILT3 and percent of Blast cells expressing CD	
Fig. (24):	Significant negative correlation between percent of Blast expressing ILT3 and percentof Blast cells expressing CD34	
Fig. (25):	A scatter diagram showing significant positive correl between Blast cells expressing ILT3 and Blast cells expre CD14 among patients	ssing
Fig. (26):	A scatter diagram showing significant positive correl between absolute count of Blast cells expressing ILT3 monocytes in PB.	and
Fig. (27):	A scatter diagram showing significant post correlation between MnIx of ILT3 expression on cells and percent of monocyte in peripheral blood patients group.	blast d in
Fig. (28):	A scatter diagram showing significant negative correl between MnIx of ILT3 expression on blast cells percent of cells expressing CD13 in patients group	and
Fig. (29):	A scatter diagram showing significant positive correl between Mn In of ILT3 expression on Blast cells and perceblast cells expressing CD14 among patient groups	ent of

List of Figures

Fig. M	o. Title	Page No.
Fig. (30):	A scatter diagram showing significant correlation between MnIx of ILT3 expression cells and percent of cells expressing CD117 in group.	on blast patients
Fig. (31):	A scatter diagram showing significant correlation between MnIx of ILT3 expression cells and percent of cells expressing CD34 in group.	on blast patients
Fig. (32):	A scatter diagram showing significant positive of between Blast cells expressing CD14 and percent of r in peripheral blood among patients,	nonocytes
Fig. (33):	A scatter diagram showing significant negative of between Blast cells expressing CD14 and percent expressing CD117 in peripheral blood among patients	t of cells
Fig. (34):	A scatter diagram showing significant correlation between absolute count of CD14 ex on BM monocytes and percent of monocyte among patients.	es in PB
Fig. (35):	Correlation Study between mean intensity of expressing on BM monocytes and percent of mor peripheral blood of AML patient.	ocytes in
Photo (1):	Staining of AML cases with non specific esterase.	70

INTRODUCTION

Acute myeloid leukemia (AML) is one of the most common types of leukemias in adults (*Arber et al.*, 2008; *Foran*, 2010). Despite major advances in our understanding of the biology of AML, the five- year survival of AML patients is only 20-40%. It has been proposed that AML originates from self renewing hematopoietic stem cells (HSC)/progenitors that have acquired multiple genetic and/or epigenetic changes (*Becher*, 2011). The heterogeneity of AML is evident from the wide variety of clinical manifestations, phenotypic features and response to therapy (*Estey and Dohner*, 2006; *Schlenk et al.*, 2008; *Marcucci et al.*, 2011).

In clinical practice, the accurate diagnosis of AML subtypes is essential for risk stratification and treatment planning. The World Health Organization (WHO) and the French-American-British (FAB) classification systems are most commonly used to subtype AML (*Arber et al.*, 2008).

AML with monocytic differentiation includes FAB M4, M5a and M5b subtypes and shows distinct clinical features (*Tallman*, *2004*; *Dohner et al.*, *2008*). Although the expression of some markers by leukemic cells is helpful for lineage assignment. The diagnosis of AML with monocytic differentiation remains challenging (*Klco et al.*, *2011*).

Flow cytometry (FCM), is a powerful tool for the investigation of normal and neoplastic cells, and their classification at every level. Therefore, it has great prognostic and therapeutic implications. Its ability to measure multiple parameters (chemical or physical characteristics) on individual cells, in a suspension at high speed, is ideal for the study of leukemic cells. It identifies cell markers by applying monoclonal antibodies against them (Pervez et al., 2005).

The inhibitory receptor Immunoglobulin Like Transcript 3 (ILT3) is a member of immunoglobulin –like transcript (ILT, LIR, or LILR) family and is expressed by dendritic cells, monocytes, endothelial cells and osteoclasts, but not by lymphocytes(Cella et al., 1997; Kim et al., 2006). Dendritic cells expressing high levels of inhibitory receptors ILT3 and ILT4 were shown to induce anergy of CD4+ T helper cells and differentiation of CD8+ T suppressor cells. (Anderson and Allen, 2009; Chang et al., 2009).

Recently ILT3 expression was reported to be a reliable could distinguish AML with differentiation from other types of AML (Dobrowolska et al., *2013*).

AIM OF THE WORK

This study aims to study the pattern of ILT3 expression by leukemic myeloid precursors in AML cases with respect to its different subtypes & clinical relevance.

Chapter 1

ACUTE MYELOID LEUKEMIA

Definition

AML is a malignancy originating from a multipotential hematopoeitic cell characterized by clonal proliferation of abnormal blast cells in the marrow and impaired production of normal blood cells resulting in aneamia, thrombocytopenia and low, normal, or high white cell counts depending on the number of leukemic cells in the blood. It occurs in nine morphologic variants, each with characteristic cytologic, genetic, and sometimes clinical features (*Lichtman et al.*, 2011).

Epidemiology

AMLs are infrequent, yet highly malignant neoplasms responsible for a large number of cancer-related deaths (*Deschler and Lübbert*, 2006).

1. Incidence

It accounts for about 80% of all leukemias in adults and 15%-20% in children (*Lichtman et al.*, *2011*).

2. Age

Acute myeloid leukemia is generally a disease of older people and is uncommon before the age of 45. The average