The study of insulin resistance and its relation to serum osteocalcin among Diabetic patients with chronic HCV infection

Thesis

Submitted for Partial Fulfilment of Master Degree in Endocrinology and Metabolism

Presented by **Haitham Youssef Ibrahim Emara**

(M.B., B.Ch.)

Under Supervision of

Prof Dr. Mohamed Reda Halawa

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Dr. Inas Mohamed Sabry

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Dr. Iman Zaky Ahmed

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

ACKNOWLEDGMENT

First and before all, I would like to express my deepest thankfulness and gratefulness to **ALLAH** who gave me the soul and the strength through this work. As our prophet said that who doesn't thank people doesn't thank ALLAH, I am honored to express my deepest appreciation and profound gratitude to *Prof. Dr. Mohamed Reda Halawa*, Professor of Internal Medicine Faculty of Medicine Ain Shams University, whose generous advice; close supervision and kind encouragement have greatly supported me to finish this work.

My best thanks and respect to *Dr. Inas Mohamed Sabry*, Assistant Professor of Endocrinology and Metabolism Faculty of Medicine Ain Shams University, for his valuable advice and thorough follow up which greatly affected the outcome of this work.

I will be always grateful and appreciating to *Dr. Iman Zaky Ahmed*, Assistant Professor of Endocrinology and Metabolism Faculty of Medicine Ain Shams University, for his support and guidance during this work.

I am honored to thank *Prof. Dr. Magdy Elhefnawy*, Chief of El-Gharbeyya Medical Syndicate for his support and his patience to guide us in making such research. He always gives his hands to his daughters and sons.

I'd like to thank my Father "Youssef", my Mother "Fatema", and my elder Sisters "Lena and Rania" for their great support.

Lastly, special thanks to all subjects who participated in this work.

A Haitham Emara

LIST OF CONTENTS

	Title	Page	
0	List	of Tables	
0	List	of Figures	
0	List	of AbbreviationsIII	
0	Intro	oduction1	
0	Aim	of the Work2	
	Cha	pter 1: Osteocalcin5	
	>	Introduction5	
	>	Osteocalcin expression, synthesis and release5	
	>	Regulation of osteocalcin expression7	
	>	Biological activities of osteocalcin9	
	>	Insulin signaling and osteocalcin10	
	>	The Relationship between adipose tissue, bone and diabetes mellitus	
	>	Osteocalcin and chronic liver disease12	
	Cha	pter 2: Diabetes Mellitus13	
	>	Introduction14	
	>	Diagnostic criteria for diabetes mellitus14	
	>	Classification of diabetes mellitus15	
	>	Type 2 diabetes mellitus16	
	>	Pathophysiology of type 2 diabetes mellitus16	
	>	Pathogenesis of insulin resistance in type 2 diabetes mellitus	
	>	Causes of insulin resistance	
	>	Measurement of insulin resistance	
	>	Bone disease in diabetes mellitus23	
	Chaj	oter 3: Hepatitis C virus25	
	>	Background25	
	>	Epidemiology25	

LIST OF CONTENTS (CONT.)

	Title	Page
	➤ Genotyping of the HCV	27
	Routes of transmission	28
	Clinical Manifestation of HC	CV Infection28
	Diagnosis of acute and chro	onic hepatitis C19
	Hepatitis c virus and insuli:	n resistance31
	9	stance in patients with chronic 31
	<u>-</u>	of hepatitis C virus-induced insulin 25
0	Subjects and Methods	42
0	Results50	
0	Discussion	62
0	Summary	68
0	Conclusion	68
0	Recommendations	69
0	References	70
0	Arabic Summary	

LIST OF TABLES

Tab. No	Title	Page
	Results	
Table (1):	Comparison between the clinical data betwe groups	
Table (2):	Comparison of the gluco-parameters betwee groups	
Table (3):	Comparison of the biochemical data betwee groups	
Table (4):	Comparison between all the studied gro	
Table (5):	Comparison of frequency of insulin resist HOMA-IR between patients with HbA1c>79 among group I patients	% and HbA1c<7%
Table (6):	Comparison of frequency of insulin resist HOMA-IR between patients with HbA1c>79 among group II patients	% and HbA1c<7%
Table (5):	Correlation of HOMA-IR with parameters	
Table (7):	Correlation of HOMA-IR with to parameters	
Table (8):	Correlation of total osteocalcin wit	
Table (9):	Correlation of total osteocalcin with the parameters	

LIST OF FIGURES

Fig. No	Title	Page
	Chapter 1: Osteocalcin	
Figure (1): Os	steocalcin synthesis in osteoblasts	6
Figure (2): En	ndocrine actions of osteocalcin	10
	Chapter 3: Hepatitis C virus	
• , ,	nteraction between hepatitis C virus congnaling pathway continuous line represent a	
	Results	
Figure (4): Con	nparison between groups as regards HOMA	-IR 54
Figure (5): Con	nparison between groups as regards osteoca	alcin 54
Figure (6): Con	relation between osteocalcin with BMI	55
Figure (7): Con	relation between osteocalcin with WC	55
Figure (8): Con	relation between osteocalcin with FBG	56
Figure (9): Cor	relation between osteocalcin with fasting ins	sulin 57
Figure (9): Con	relation between osteocalcin with HOMA-IR	57

LIST OF ABBREVIATIONS

LIGI OF ADDITED ATTOMS		
Akt/PKB	Akt Protein Kinase B	
ATP	Adenosine Tri-Phosphate	
bFGF	basic Fibroblast Growth Factor	
BGP/BGLAP	Bone Gamma-carboxyglutamic acid protein	
ВМР	Bone Morphogenetic Protein	
BMD	Bone Mineral Density	
ВМІ	Body Mass Index	
СНС	Chronic Hepatitis C	
DCCT	Diabetes Control and Complications Trial	
DNA	Deoxyribonucleic Acid	
Elisa	Enzyme Linked Immunosorbent Assay	
FBG	Fasting Blood Glucose	
FFA	Free fatty acids	
FPI	Fasting Plasma Insulin	
GDM	Gestational Diabetes Mellitus	
GLUT4	Glucose Transporter-4	
HbA1c	Hemoglobin A1c	
HBsAg	Hepatitis B surface Antigen	
HBV	Hepatitis B Virus	
нсс	Hepatocellular carcinome	
HCV	Hepatitis C Virus	
HCV RNA	Hepatitis C Virus Ribonucleic Acid	
HCVAb	Hepatitis B Virus Antibodies	
HDL-cholesterol	High density Lipoprotein cholesterol	

LIST OF ABBREVIATIONS (CONT.)

HIV/AIDS	Human Immuno-deficiency Virus / Acquired Immune Deficiency Syndrome
НОМА	The Homeostatic Model Assessment
HOMA-IR	The Homeostatic Model assessment to detect Insulin Resistance
IFNAR2c	Interferon Receptor Chain 2
IGF-1	Insulin-like Growth Factor
IGFBP-2	Insulin Growth Factor Binding Protein-2
IL-6	Interleukin-6
IRs	Insulin Receptors
IRS	Insulin Receptor Substrate
IR	Insulin Resistance
JAK	Janus Kinase
LDL-cholesterol	Low Density Lipoprotein - cholesterol
MAPK/ERK	Mitogen-Activated Protein Kinase/ The Extracellular signal Regulated Kinase
NAFLD	Non-Alcoholic fatty Liver Disease
NGSP	National Glycohemoglobin Standardization Program
ос	Osteocalcin
OGTT	Oral Glucose Tolerance Test
ov	Oesophageal varices
PAI-1	Plasminogen activator inhibitor-1
PEG-IFN	Pegylated interferon
РІЗК	Phosphatidyl-Inositol-3-Kinase
PKA	Protein Kinase A
PKC	Protein Kinase c

LIST OF ABBREVIATIONS (CONT.)

РТН	Parathyroid hormone	
ROS	Reactive Oxygen Species	
Runx2	Runt Realted Transcription Factor2 on Chromosome17 for protein coding	
SOCS-3	Suppressor Of Cytokines-3	
STAT	Signal transducer and activator of transcription	
SVR	Sustained Virological Response	
T2DM	Type 2 Diabetes Mellitus	
TG	Triglycerides	
TGF-β	Transforming growth factor-β	
TNF-a	Tumor Necrosis Factor-α	
Twist2	Twist basic helix-loop-helix transcription factor 2 on chromosome 1 for protein coding	
TYK2	Tyrosine kinase 2	
VDR	Vitamin D Receptors	
β -cell	Beta cells of pancreas	

Introduction

Introduction

Kanazawa, (2011) showed that osteocalcin functions as a hormone that regulates glucose metabolism and fat mass. Also **Zhou**, et al., (2009) suggested that osteocalcin can increase β -cell proliferation, insulin secretion, and insulin sensitivity by increasing adiponectin gene expression.

Clinical observations showed that serum osteocalcin levels are significantly lower in type-2 diabetic patients, and become normal following improvement of glycemic control (Oz, et al., 2006).

Circulating osteocalcin levels have been reported to be inversely associated with measures of insulin resistance (fasting insulin and glucose levels and homeostasis model assessment of insulin resistance [HOMA-IR]) and adiposity (body mass index [BMI]) and fat percentage (*Kindblom et al.*, 2009).

A population-based study in an HCV hyperendemic area revealed that chronic HCV infection was associated with severe insulin resistance and with mild atherosclerosis, suggesting a unique characteristic of HCV-related metabolic abnormality (Miyajima, et al., 2012).

There is no evidence based data that is published studying the relation between serum osteocalcin and glucose homeostasis with chronic liver disease and HCV chronic active hepatitis.

Aim of the work

The study of insulin resistance and its relation to serum osteocalcin among Diabetic patients with chronic HCV infection.

Chapter I: Osteocalcin

Introduction

Osteocalcin is a 49-amino acid bone matrix non-collagen protein expressed mainly by osteoblasts (Ferron, et al., 2010). It is also known as "bone gamma-carboxyglutamic acid protein (BGP) and is the most abundant noncollagenous protein of bone matrix (Razzaque. 2011). Studies have verified that adipose tissue could regulate bone remodeling through the adipokine leptin by acting on osteoblasts (Elefteriou, et al., 2005). Osteocalcin has been recognized as a bone-derived hormone to regulate energy metabolism. Osteocalcin knockout mice exhibited glucose intolerance, increased fat mass, insulin resistance, decreased expression of insulin target genes in liver and muscle, and decreased adiponectin gene expression in adipose tissue (Lee, et al., 2007). Administration of recombinant osteocalcin increased insulin secretion, decreased blood glycaemia and weaken the development of obesity. In an in vivo study, when wild-type mice were given osteocalcin through implanted pumps (~3 ng/h), results indicated significantly lower blood glucose levels compared with placebo (Ferron, et al., 2008).

• Osteocalcin expression, synthesis and release:

The BGLAP gene encoding for OC is expressed efficiently in osteoblasts and odontoblasts, and more weakly in the ovaries, prostate, testes, skeletal muscle, thyroid and other tissues (Jung, et al., 2001). Once transcribed, osteocalcin undergoes posttranslational modifications within the osteoblast before its secretion. Vitamin D stimulates directly osteocalcin transcription (in fact the gene has a "vitamin D responsive element") while vitamin K regulates carboxylation processes. In addition, various growth factors, hormones, or cytokines can modulate osteocalcin production through signaling pathways or interacting with

CHAPTER I: OSTEOCALCIN

transcription factors that act on osteocalcin gene promoter region (BGLAP gene in chromosome 1q25–q31) (Villafan-Bernal, et al., 2011).

Carboxylated Gla residues are involved in calcium and hydroxyapatite binding, allowing osteocalcin deposition in mineralized bone matrix (Razzaque. 2011). Levels of undercarboxylated osteocalcin are influenced by vitamin K status, whereas total circulating concentrations of osteocalcin are influenced by bone cells activity independent of vitamin K (Booth, et al., 2013).

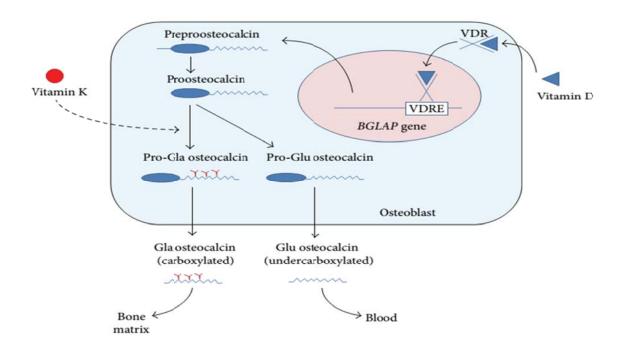


Figure 1: Osteocalcin synthesis in osteoblasts.

VDR: Vitamin D Receptors, BGLAP gene: Bone Gamma Carboxyglutamic acid containing Protein (Aurora Patti, et al., 2013).