Lipid Profile and High Sensitivity C-Reactive Protein in Patients with Rheumatoid Arthritis

Thesis

Submitted for Partial Fulfillment of Master Degree in Rheumatology

By

Abdallah Farag Abdallah Hasan

 $\mathcal{M}.\mathcal{B}.\ \mathcal{B}.\mathcal{C}h$

Under Supervision of

Prof. Dr./ Adel Mahmoud Ali

Head of Rheumatology Department Faculty of Medicine - Ain Shams University

Dr./ Sherin Mohamed Hosny

Assistant Professor of Internal Medicine and Rheumatology Faculty of Medicine - Ain Shams University

Dr./ Caroline Samy Morad

Lecturer of Internal Medicine and Rheumatology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2016

سورة البقرة الآية: ٣٢

First and foremost, praise and thanks must be to ALLAH, Who guides me throughout life.

I would like to express my deepest gratitude and thanks to **Prof. Dr./ Adel Mahmoud Ali,** Professor of Internal Medicine and Rheumatology, Head of Rheumatology Department, Faculty of Medicine - Ain Shams University, for his kind continuous encouragement and great support throughout the work. It was a great honor to be a student working under his supervision.

I am also greatly indebted and grateful to **Dr./ Sherin Mohamed Hosny,** Assistant Professor of Internal Medicine
and Rheumatology, Faculty of Medicine - Ain Shams University,
for her great help, valuable time, careful supervision and
continuous advices and her efforts that made this work come to
light.

I am also greatly indebted to **Dr./ Caroline Samy Morad,** Lecturer of Internal Medicine and Rheumatology,
Faculty of Medicine - Ain Shams University, it was impossible
for me to finish this work without her wise instructions and
guidance. No words would ever fulfill my deepest gratitude
towards her support.

Last but not least, I can't forget to thank all members of my Family for their kind care and support, specially my Parents, my Wife and my Lovely daughter.

Candidate

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Study	4
Review of Literature	
Rheumatoid Arthritis	5
Atherogenic Lipid Profile in RA	71
High Sensitivity C-Reactive Protein	87
Patients and Methods	98
Results	106
Discussion	134
Summary and Conclusion	147
Recommendations	151
References	152
Arabic Summary	

List of Abbreviations

Abbr. Full-term **ACAT** : Acyl-coenzyme A: cholesterol acyltransferase : Anti-citrullinated protein antibodies **ACPAs** : American College of Rheumatology ACR AF : Atrial fibrillation ALT : Alanine aminotransferase : Anti-cyclic-citrullinated peptide antibody anti-CCP **APCs** : Antigen-presenting cells **ASA** : Aminosalicylates **AST** : Aspartate aminotransferase ATR-1 : Angiotensin type 1 receptor II **BeSt** : Behandel Strategieen **BUN** : Blood urea nitrogen CAC : Coronary artery calcium **CBC** : Complete blood count : Clinical Disease Activity Index **CDAI CHD** : Coronary Heart Disease **COBRA** : Combination Therapy Trial in Early RA **CRP** : C- Reactive protein CV : Cardiovascular **CVD** : Cardiovascular disease **CZP** : Certolizumab DAS : Disease activity score **DHEA** : Dehydroepiandrosterone : Dihydrofolate reductase **DHFR DHODH** : Dihydroorotate dehydrogenase : Distal Interphalangeal Joint DIP

DM : Diabetes mellitus

DMARD: Disease-modifying anti-rheumatic drug

DZ : Dizygotic

EBV : Epstein bar virus ECM : Extracellular matrix

eGFR : Estimated glomerular filtration rate

EPC : Endothelial progenitor cells

ESR : Erythrocyte sedimentation rate

EULAR : European League Against Rheumatism

FLS: Fibroblast-like synoviocytes

GI : Gastrointestinal

HAQ : Health Assessment Questionnaire

HCQ : Hydroxychloroquine

HDL : High density lipoprotein

Hgb : Hemoglobin

HIF-1 : Hypoxia-inducible factor 1HLA : Human leukocyte antigen

HS-CRP: High sensitivity C- reactive protein

HSPs: Heat shock proteins

HTLV-I: Human T-lymphotropic virus type I

IgG : Immunoglobulin G

IL : Interleukin

ITAM : Immune receptor tyrosine-based activation motifs

kD : Kilo Dalton

LDL : Low density lipoprotein

LEF : Leflunamide

LGL : Large granular lymphocyte

LPL : Lipoprotein lipase

MAB : Monoclonal antibody

MAC : Membrane attack complex

MCP : Metacarpophalangeal JointMCP : Monocyte chemotactic protein

mCRP : Monomeric CRP

MCV : Mutated citrullinated vementinMHC : Major histocompatibility complex

MI : Myocardial infarction

MRFIT : Multiple risk factors international trial

MRI : Magnetic Resonance Imaging

MTP : Metatarsophalangeal

MTP : Microsomal triglyceride transfer protein

MTX : MethotrexateMZ : Monozygotic

NCEP : National Cholesterol Education Program

NO : Nitric oxide

NSAIDS : Non steroidal anti-inflammatory drugs

OPG : Osteoprotegrin

PAI : Plasminogen activator inhibitor

PCRP : Pentameric CRP

PEG: Polyethyelene glycol

PIP : Proximal Interphalangeal Joint

PKT : Tyrosine protein kinase

PMF : Progressive massive fibrosis

RA : Rheumatoid arthritis RF : Rheumatoid factor

RHUIL-1: Recombinant human interleukin-1

RUMP : Ribonucleotide uridine monophosphate pyrimdine

SAP : Serum amyloid P SD : Standard deviation

SDAI : Simplified Disease Activity Index

SE : Shared Epitope

SF : Short form

SRC : Sarcoma family kinase

SSZ : Sulfasalazine

SYK : Spleen tyrosine kinaseTfR : Transferrin receptor

TGs : Triglycerides

TLRs : Toll-like receptors

TNF : Tumor necrosis factor Tregs : Regulatory T cells

ULN : Upper limit of numberVAS : Visual analogue scale

VEGF : Vascular endothelial growth factor

VLDL : Very low density lipoproteinVTE : Venous thromboembolism

WBCs : White blood cells

List of Tables

Table No	o. Hitle	Page No.
I. <u>Review</u>		
	987 American College of Rheumat lassification criteria for rheumatoic	~ .
f	015 Update of the 2008 ACR Reco or the use of DMARDS and Biolo he Treatment of RA	gic Agents in
II. <u>Result</u>	<u>s</u>	
Table (1):	Distribution of demographic dat patients (n=60).	•
Table (2):	Distribution of demographic Control group (n=40).	
Table (3):	Descriptive analysis of some among the RA patients (n=60)	
Table (4):	Drug therapy in RA patients (n=6	0) 108
Table (5):	Disease activity scoring (DAS 2 VAS among the studied RA patient	
Table (6):	Descriptive analysis of some la among RA patients (n=60)	•
Table (7):	Descriptive analysis of radiolog among RA patients (n=60)	
Table (8):	Comparison between our studied (n=60) and control group (n=40) and gender	as regards age

Table (9):	Comparison between our studied RA patients (n=60) and control group (n=40) as regards some laboratory data
Table (10):	Comparison between our studied group of male RA patients (n=30) and male controls (n=20) as regards age and some laboratory data
Table (11):	Comparison between female RA patients and female controls as regards age, and some laboratoty data
Table (12):	Comparison between male and female RA patients as regards some demographic and clinical data
Table (13):	Comparison between male and female RA patients as regards drug history
Table (14):	Comparison between male and female RA patients as regards radiological findings
Table (15):	Comparison between male and female RA patients as regards some laboratory data
Table (16):	Comparison between male and female RA patients as regards lipid profile
Table (17):	Comparison between male and female controls as regards lipid profile
Table (18):	Correlations between lipid profile and hs-CRP with clinical data among studied RA patients: 126
Table (19):	Correlations between lipid profile & hs-CRP, with some laboratory data
Table (20):	Correlations between hs-CRP and lipid profile in RA patients

List of Figures

Figure No.	Title	Page No

i.	Review

·		
Figure (1):	Adaptive and Innate Immune Processes within the Joint	13
Figure (2):	The multiple roles of B cells in rheumatoid arthritis	16
Figure (3):	A woman with longstanding rheumatoid arthritis has soft tissue swelling and subluxation of the metacarpophalangeal joints. The right thumb shows Z deformity. Both ring fingers have boutonniere deformities	21
Figure (4):	Rheumatoid nodules are present near the elbows in	23
Figure (5):	Classic ulcer with granulomatous base and undermined gunmetal-colored border in patient with RA	23
Figure (6):	Erythematous annular plaque lesions on the neck of a patient (left panel). Vesicular and pustular lesions of Sweet syndrome involving the buttocks (right panel)	24
Figure (7):	Early lesion in pyoderma gangrenosum presenting as a pustular and violaceous plaque with incipient breakdown	24
Figure (8):	Erythematous papules of rheumatoid neutrophilic dermatitis are symmetrically scattered in this patient with rheumatoid arthritis	25
Figure (9):	High resolution CT demonstrating a pleural effusion associated with a cavitating rheumatoid nodule. The patient presented with pleuritic chest pain	26
Figure (10):	Exogenous pathway of lipid metabolism	
	Endogenous pathway of lipid metabolism	

Figure (12): I	Metabolism of HDL steps79
Figure (13): 1	Molecular structure of CRP90
Figure (14):	Representation of CRP-mediated effects on atherosclerosis and CHD
ii. Resu	ilts
Figure (1):	Drug History
Figure (2):	DAS activity classification
Figure (3):	Radiological findings
Figure (4):	Comparison between patients and controls as regards age
Figure (5):	Comparison between all patients and controls as regards lipid profile
Figure (6):	Comparison between male patients and male controls as regards lipid profile
Figure (7):	Comparison between female patients and female controls as regards lipid profile
Figure (8):	Comparison between RA patients and controls as regards hsCRP
Figure (9):	Comparison between females and males RA pts as regards drug history
Figure (10):	Comparison between females and males as regards hsCRP (ng/dl)
Figure (11):	Comparison between female and male as regards CRP
Figure (12):	Comparison between female and male RA patients as regards Lipid profile
Figure (13):	Comparison between female and male control as regards lipid profile

Figure (14):	Correlation between cholesterol and age 127
Figure (15):	Correlation between cholesterol and morning stiffness
Figure (16):	Correlation between TGs and no of swollen joints
Figure (17):	Correlation between LDL and age 127
Figure (18):	Correlation between LDL and morning stiffness
Figure (19):	Correlation between LDL and no of tender joints
Figure (20):	Correlation between hs-CRP and morning stiffness
Figure (21):	Correlation between hs-CRP and VAS 128
Figure (22):	Correlation between cholesterol and ESR 130
Figure (23):	Correlation between cholesterol and CRP 130
Figure (24):	Correlation between TGs and ESR 130
Figure (25):	Correlation between HDL and RF 130
Figure (26):	Correlation between LDL and CRP 130
Figure (27):	Correlation between hs-CRP and ESR 130
Figure (28):	Correlation between cholesterol and hs-CRP in all patients
Figure (29):	Correlation between TGs and hs-CRP in all patients
Figure (30):	Correlation between HDL and hs-CRP in all patients
Figure (31):	Correlation between LDL and hs-CRP in all patients
Figure (32):	Correlation between cholesterol and hs-CRP in female patients

Figure (33):	Correlation between HDL and hs-CRP in female patients
Figure (34):	Correlation between LDL and hs-CRP in female patients
Figure (35):	Correlation between cholesterol and hs-CRP in male patients
Figure (36):	Correlation between TGs and hs-CRP in male patients
Figure (37):	Correlation between HDL and hs-CRP in male patients
Figure (38):	Correlation between LDL and hs-CRP in male patients