ROLE OF URINARY MONOCYTE CHEMOATTRACTANT PROTEIN-1 AS A BIOMARKER FOR LUPUS NEPHRITIS ACTIVITY

Thesis

Submitted for Fulfillment of the Master Degree In Internal Medicine

By

Shereen Hussein Ibrahim El-Mansy

M.B.B.Ch Internal medicine, Faculty of Medicine, Cairo University

Under supervision of

Dr. Mohammed Mostafa El khatib

Assistant Professor of internal medicine and nephrology
Faculty of medicine, Cairo University

Dr. Amal Rashad El shehaby

Assistant Professor of Biochemistry
Faculty of medicine, Cairo University

Dr. Mohammed Momtaz Mohammed

Lecturer of internal medicine and nephrology
Faculty of medicine, Cairo University

Faculty of Medicine
Cairo University
2013

Acknowledgement

First and foremost thanks to ALLAH, the most beneficial and merciful

I would like to express the deepest appreciation to all the people who have directly or indirectly influenced this work in a positive way. I have to thank my kind supervisors who led me through my journey.

Special thanks to **Dr. Mohammed Elkhatib**, whom I was really honored to work under his supervision for his valuable suggestions, effective guidance, and meticulous cooperation.

I am extremely grateful to **Dr. Amal El shehaby**, for her invaluable help during conducting the lab work and interpretation of the results.

My profound appreciation and deep thanks to **Dr. Mohammed**Momtaz for his close supervision and guidance all through the work. I
greatly appreciate his professional support and advice and I wish to
thank him for giving me much of his time, advice and effort to complete
this work.

I thank all the **patients** who have willingly and kindly cooperated to be part of our study. I wish them the best of health.

I would like to thank **Dr. Amr Hussein** Head of Nephrology Department, Students' hospital, Cairo University, for his faithful advice and kind help.

It is difficult to express my feelings towards My Family & Friends especially Dr. Hend Fayed, Dr. Reham Abd El-Ghany & Dr. Elham Ghoneim for their deep and close support and reassurance with endless patience.

Shereen El-Mansy

Dedication

I Dedicate This Work To

The soul of my beloved father

My mother for her endless love, care & support

through all my life stages

My sisters for their help & love.

My family

My supervisors

And to my lovely friends

Abstract

Objective: Renal biopsy is the "gold standard" to determine renal activity in systemic lupus erythematosus (SLE), but it is expensive, invasive, and carries risk. Monocyte chemoattractant protein-1 (MCP-1), a chemotactic cytokine involved in the progression of glomerular and tubulointerstitial injury. We investigated urinary MCP-1(u MCP-1) as potential biomarker for lupus nephritis.

Patients and methods: In 73 SLE patients, and in 23 healthy volunteers, urinary levels of MCP-1 were measured. Disease activity was assessed by total SLE disease activity index (tSLEDAI), and renal activity by renal SLE disease activity index (rSLEDAI), and both were correlated with uMCP-1. Sensitivity, specificity, and predictive values of MCP-1 to predict lupus nephritis (LN) were also calculated.

Results: Significantly higher levels of uMCP-1 were observed in SLE patients with LN compared with those without LN, (MCP-1 P<0.001). Other significantly higher levels were observed in SLE patients with LN compared to control subjects (MCP-1, P<0.001). Positive correlations were observed between rSLEDAI and MCP-1 (r=0.635, p<0.001).

Conclusion: The lack of availability of urine biomarkers has impeded development of new therapies for LN. Urinary levels of MCP-1 positively correlate with renal involvement as assessed by rSLEDAI with reasonable sensitivity, specificity and predictive values to detect LN.

Keywords:

(Biomarkers - Lupus Nephritis - Monocyte Chemoattractant Protein-1)

List of Contents

	Page
List of abbreviations	I
List of tables	Ш
List of figures	IV
Review of literature	
Chapter (1): (Systemic lupus erythematosus)	1
Chapter (2): (Biomarkers for Lupus Nephritis)	65
Chapter (3): (Monocyte chemoattractant protein-1)	81
Patients and methods	89
Results	92
Discussion	104
Summary	111
Recommendations	113
References	114
Arabic summary	

List of Abbreviations

AGP	1-acid-glycoprotein
AKI	Acute kidney injury
AH	Alveolar hemorrhage
ACR	American College of Rheumatology
ARA	American Rheumatism Association
ACE	Angiotensin converting enzyme
ANA	Anti neuclear antibody
Anti dsDNA	Antibody to double-stranded DNA
Anti Sm	Antibody to Sm nuclear antigen
ARBs	Angiotensin receptor blockers
anti-C1q	Antibodies to complement component C1q
CNS	Central nervous system
CSF	Cerebrospinal fluid
СР	Ceruloplasmin
CCR	Chemokine receptor
CRP	C reactive protein
CYC	Cyclophosphamide
DC	Denderitic cells
DN	Diabetic nephropathy
ds	Double stranded
ESRD	End stage renal disease
ESR	Erythrocyte sedimentation rate
FSGS	Focal segmental glomerulosclerosis
GWAS	Genome-wide association study
GCs	Glucocorticoids
GBM	Glomerular basement membrane
GM-CSF	Granulocyte macrophage colony stimulating factor
HPF	High-power field
HLA	Human leukocyte antigens
HCQ	Hydroxychloroquine
IC	Immune complex
(ISN/RPS)	International Society of Nephrology and the Renal
	Pathology Society
ICAM	Intercellular adhesion molecules
IL	Interleukin
IV	Intravenous
KCS	Keratoconjunctivitis sicca
KT	Kidney transplant
L-FABP	Liver-type fatty acid binding protein

I

L-PGDS	Lipocalin-type prostaglandin D-synthetase
LN	Lupus nephritis
MHC	Major histocompatibility
mEPCR	Membrane endothelial protein C receptor
MCP-1	Monocyte chemoattaractant protein
MMF	Mycophenolate mofetil
NK	Natural killer
NGAL	Neutrophil gelatinase-associated lipocalin
NO	Nitric oxide
OPG	Osteoprotegerin
ROC	Receiver operator characteristic
RBC	Red blood cells
RANTES	Regulated upon Activation Normal T-cell Expressed &
	Secreted cytokines
rSLEDAI	Renal systemic lupus disease activity index
RRT	Renal replacement therapy
RAAS	Renin-angiotensin-aldosterone system
SS	Single stranded
SD	Standard deviation
SLE	Systemic lupus erythrmatosus
TLRs	Toll-like receptors
tSLEDAI	Total systemic lupus disease activity index
TF	Transferrin
TNF	Tumor necrosis factor
TAM	Tumor-associated-macrophage
UV	Ultraviolet
U MCP-1	Urinary monocyte chemoattaractant protein-1
WBCs	White blood cells
WHO	World Health Organization
VEGF	Vascular endothelial growth factor

List Of Tables

Table		Page
1	ACR criteria for diagnosis of systemic lupus erythematosus	21
2	Systemic Lupus Erythematosus Disease Activity Index	25
	(SLEDAI)	
3	International Society of Nephrology (ISN/RPS) 2003	39
	classification of lupus nephritis	
4	Other renal lesions in systemic lupus erythematosus	40
5	Clinical-Pathological correlations in lupus nephritis	45
6	Histopathological criteria for activity & chronicity in renal	46
	biopsy in lupus nephritis	
7	Involvement of CCL2 in different diseases	83
8	Clinical variables of group I	92
9	Laboratory variables of group I	93
10	Clinical variables of group II	94
11	Laboratory variables of group II	95
12	Comparison between clinical variables in group I and Group II	96
13	Comparison between laboratory variables in group I and	97
	Group II	
14	Comparison between MCP-1 in group I, group II and group III	99
15	Correlations between MCP-1 with clinical and laboratory	101
	variables in all involved lupus patients of groups I	
16	Sensitivity, specificity, positive and negative predictive values	102
	of MCP-I of the whole group of SLE patients (n=73)	
17	Correlation between MCP-1 of SLE patients with lupus	103
	nephritis in relation to renal biopsy	

List Of Figures

Fig.		Page
1	Over view of the pathogenesis of systemic lupus erythematosus	5
2	Malar erythema in systemic lupus erythematosus	10
3	Butterfly discoid lupus	10
4	Raynaud phenomenon	11
5	Proposed Mechanisms through which anti-dsDNA antibodies mediate renal injury	30
6	Classic histopathological features of proliferative lupus glomerulonephritis	41
7	Histopathological findings of membranous lupus glomerulonephritis	41
8	Glomerular patterns of injury in lupus nephritis	42
9	Mesangial lupus glomerulonephritis	43
10	Class III/IV induction therapy	52
11	Treatment of class V without proliferative changes	53
12	Treatment of class III, IV, and V in patients who are pregnant	63
13	Comparison between tSLEDAI and rSLEDAI in group I and group II	98
14	Comparison between urine proteins & serum creatinine in group I & group II	98
15	Comparison between urine proteins, urine MCP1, C3, & C4 in group I & group II	100
16	Sensitivity and specificity of the MCP-1 level as a marker of	102
	nephritis in lupus patients	

SYSTEMIC LUPUS ERYTHEMATOSUS

Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder affecting almost all organs and tissues, including the skin, joints, kidneys, lungs, nervous system and serous membrane (*Alunno et al.*, 2012).

SLE is protean in its manifestations and follows a relapsing and remitting course (*Bartels et al.*, 2006). While the etiology of SLE is thought to be multifactorial, the disease is characterized by the production of autoantibodies which leads to immune complex(IC) deposition, inflammation and eventually, permanent organ damage (*Lam and Petri*, 2005).

In genetically predisposed subjects, environmental factors, such as viral infections and smoking, induce the breakdown of self-tolerance eventually triggering autoimmune response (*Alunno et al.*, 2012).

SLE manifestations are caused by autoantibodies and ICs that activate the complement system in various tissues. This results in acute and chronic inflammation and tissue damage (*Munoz et al.*, 2010).

It is characterized by a loss of tolerance to nuclear antigens and various immunological abnormalities, including deregulated activation of both T and B lymphocytes and subsequent polyclonal activation of circulating B lymphocytes which produces a large quantity of autoreactive antibodies and the formation of ICs causing tissue and organ damage (*Shui-Lian et al.*, 2012).

The clinical course of SLE is variable and may be characterized by periods of remissions and chronic or acute relapses. Women, especially in their 20s and 30s, are affected more frequently than men (*Cervera et al.*, 2003).

In genetically predisposed subjects, environmental factors, such as viral infections and smoking, induce the breakdown of self-tolerance eventually triggering autoimmune response (*Alunno et al.*, 2012).

EPIDEMIOLOGY

The reported prevalence of SLE in the population is 20 to 150 cases per 100,000 (*Lawrence et al., 1998*). In women, prevalence rates vary from 164 (white) to 406 (African American) per 100,000. Due to improved detection of mild disease, the incidence nearly tripled in the last 40 years of the 20th century (*Chakravarty et al., 2007*).

Geographic and racial distribution

- The disease appears to be more common in urban than rural areas (*Pons-Estel et al.*, 2010).
- The prevalence of SLE is higher among Asians, Afro-Americans, Afro-Caribbeans, and Hispanic Americans compared with Americans of European decent in the United States, and among Asian Indians compared with Caucasians in Great Britain. In comparison, SLE occurs infrequently in Blacks in Africa (*Rus et al.*, 2007).

Gender

SLE principally affects women during childbearing years. The female-to-male ratio is around 9:1. Although virtually all patients have skin and joint disease, between 30 and 50% will also develop renal, lung, heart and central nervous system (CNS) involvement (*Li & Isenberg et al.*, 2005).

The increased frequency of SLE among women has been attributed in part to an estrogen hormonal effect (*Chung et al.*, 2009).

- In children, in whom sex hormonal effects are presumably minimal, the female-to-male ratio is 3:1 (*Costenbader et al.*, 2007).
- In adults, the ratio ranges from 7:1 to 15:1 (*Chakravarty et al.*, 2007).
- In support of the potential role of estrogens in predisposing to SLE, the Nurse's Health study showed that women with early menarche, or treated with estrogen-containing regimens, such as oral contraceptives or postmenopausal hormone replacement therapies, have a significantly increased risk for SLE (*Cooper et al.*, 2008).

Factors related to the X chromosome may also be important in predisposing women to SLE. At least three predisposing genes are located on X chromosomes (*Lahita*, 2009). There is also evidence for a gene dose effect, since the prevalence of XXY (Klinefelter's syndrome) is increased 14-fold in men with SLE when compared with the general population of men, whereas XO (Turner's syndrome) is underrepresented in women (*Buyon et al.*, 2005).

Age of onset:

Sixty-five percent of patients with SLE have disease onset between the ages of 16 and 55 (*Ballestar et al.*, 2006). Of the remaining cases, 20 percent present before age 16, and 15 percent after age 55(*Lockshin*, 2006).

Etiopathogenesis

The etiology of SLE remains unknown and is clearly multifactorial. Many observations suggest a role for genetic, hormonal, immunologic, and environmental factors (Fig. 1). Recent advances that could improve the treatment of SLE include the identification of genetic variations (*Gualtierotti et al.*, 2010).

The following steps have been suggested:

- 1. Genetic predisposition.
- 2. Gender as an additional predisposing factor.
- 3. Environmental stimuli which start immune responses.
- 4. Appearance of autoantibodies.
- 5. Regulation of the autoantibodies, T and B cell fails with the development of the clinical disease.
- 6. Chronic inflammation and oxidative damage as causes of tissue damage influencing morbidity (*Gualtierotti et al.*, 2010).

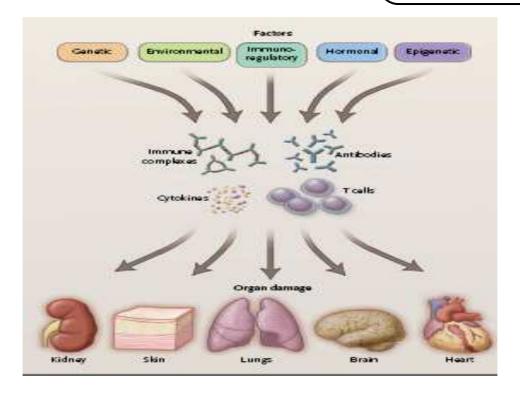


Figure (1): Over view of the pathogenesis of SLE (Gualtierotti et al., 2010).

1) Genetic factors

- Studies have demonstrated a greater concordance rate of SLE among monozygotic and dizygotic twins. Concordance of SLE was present in 11 (58%) of 19 monozygotic twins (*Von Mühlen & Nakamura*, 2012).
- Five to twelve percent of relatives of patients with SLE have the disease (*Harley et al.*, 2006).
- The most common genetic predisposition is found at the major histocompatibility locus(MHC). The MHC contains genes for antigen presenting molecules (class I human leukocyte antigens [HLA-A, -B, and -C] and class II HLA molecules [HLA-DR, -DQ, and DP]). The MHC also contains genes for some complement

components, cytokines, and heat shock protein (*Murashima et al.*, 2004).

Genes on different chromosomes are also associated with clinical subsets such as nephritis (2q34), hemolytic anemia (11q14), discoid lupus and thrombocytopenia (11p13), vitiligo (17p12); to production of certain autoantibodies (e.g., anti double stranded DNA(anti-ds DNA) [19p13.2]); or to increased risk for end stage renal disease (*Jönsen et al.*, 2007).

2) Hormonal factors

Hormones contribute through unknown mechanisms to the increased prevalence of SLE among women. The X chromosome may contribute independently from hormones because in castrated female and male mice that have been genetically manipulated to express XX, XO (female), XY, or XXY (male) combinations, the presence of two X chromosomes increases the severity of SLE (*George and Tsokos*, 2012).

Substantial evidence of the immunoregulatory function of estradiol, testosterone, progesterone and pituitary hormones, including prolactin, has supported the hypothesis that they modulate the incidence and severity of SLE (*Croker and Kimberly, 2005*). As examples:

- The use of estrogen-containing contraceptive agents is associated with a 50 percent increase in risk of developing SLE; while either early onset of menarche (age ≤10 years) or administration of estrogen to postmenopausal women doubles their risk (*Kim-Howard et al.*, 2010).
- SLE has been observed in some males with Klinefelter's syndrome (*Li et al.*, 2005).