

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

Flow of a fluid near a plate and its stability

Thesis

Submitted in partial fulfillment for rquirement of the Master Degree in Science (Applied Mathematics)

Ву

Mohamed Khair Alla Mohamed Hadhooda

Supervisors

Prof. Dr. Fayez Nassif Ibrahim

Professor of Applied Mathematics,
Faculty of Science,

Ain Shams University

Prof. Dr. Ahmed Elazab Radwan

Professor of Applied Mathematics,

Almed Rall

Faculty of Science,

, Ain Shams University

Dr. Mourad Fadl Alla Dimian

Lecturer of Applied Mathematics,

Faculty of Science,
Ain Shams University

Submitted to

Department of Mathematics,

Faculty of Science,

Ain Shams University,

Cairo, Egypt

2002

B1490

Den abbil

ter næ

bancqA

. 5431

. 1 1.

च्यो(५ वर्ग

perefro.

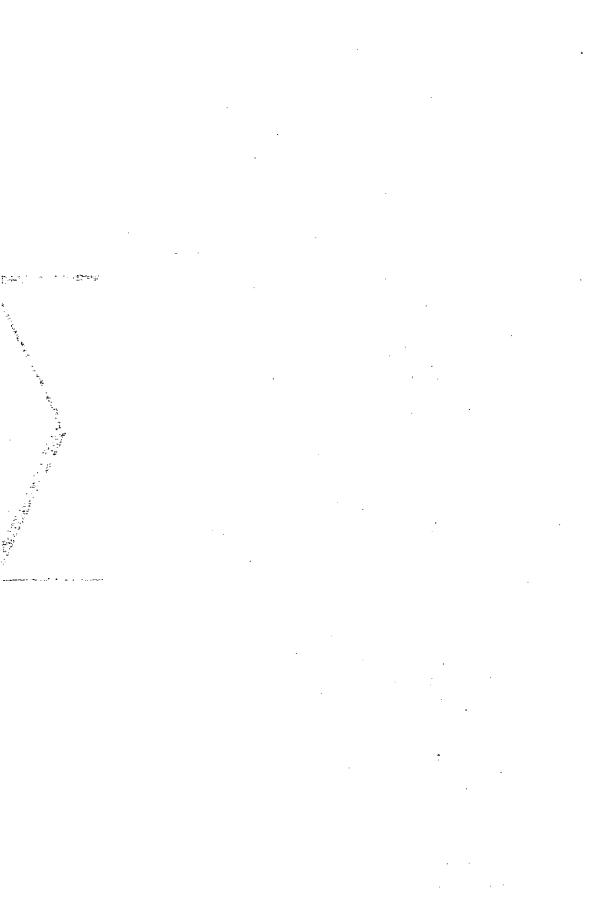
ansi i .

ce, Ain

to moisis.

£.;;

9-11-


Acknowledgement

I would like to express my deep appreciation and gratitude to Professor, Dr. Ibrahim F. N., Professor of Applied Mathematics, Faculty of Science, Ain Shams University for his great help offered during the preparation of this thesis.


I am deeply grateful to Professor Dr. Ahmed E. Radwan, Professor of Applied Mathematics, Faculty of Science, Ain Shams University for his great help offered during the preparation of this thesis.

I wish to express my gratitude to Dr. Mourad F. Dimian, Lecturer of Applied Mathematics, Faculty of Science, Ain Shams University for his unlimited help, encouragement and for offering me valuable facilities throughout the supervision of this thesis.

Finally, I would like to thank all members of the Mathematics Department, Faculty of Science, Ain Shams University

Contents

page					
List of symbolsi					
Summaryiv					
Cha	ipter (1)	Introduction			
1.1	Transpo	ort properties of the fluid	1		
	1.1.1		1		
	1.1.2	Thermal diffusivity as a function of temperature	2		
	1.1.3	The coefficient of mass diffusivity	2		
	1.1.4	Mass diffusivity as a function of temperature	3.		
1.2	Bounda	ry layer theory	4		
1.3		nsfer of mass	5		
1.4		gnetohydrodynamic boundary layer	7		
1.5	On the	recent studies and researches	8		
1.6	Basic e	quations	11		
	1.6.1	Laminar boundary layer equations	11		
	1.6.2	MHD boundary layer equations	12		
1.7	~	lynamic stability	14		
1.8	On the p	present work	15		
Cha	ıpter (2)	Natural convection flow with variable			
		viscosity, heat and mass diffusion along			
		a vertical plate			
2.1	Introd	luction	17		
2.2		ulation of the problem	19		
2.3	The p	rimary physical quantities of interest	26		
2.4	The n	umerical solution	27		
2.5		overning parameters	29		
2.6	Resul	ts and discussion	31		

Chapter (3) Mixed convection flow with variable magnetic field on a vertical flat plate

3.1	Introduction	60
3.2	Basic equations	62
3.3	The primary physical quantities of interest	68
3.4	The governing parameters	69
3.5	The numerical solution and Results	70
Chap	oter (4) On the stability of convection flow pervade	d by
	magnetic field	
4.1	Introduction	86
4.2	Formulation of the problem	87
4.3	Perturbation analysis	90
4.4	Normal mode analysis technique	91
4.5	Numerical discussion of the dispersion relation	95
4.6	Discussion of the results	96
Conclusion		99
Apper	ndix	100
Refer		108
•	c Summary	
	-	

List of Symbols

English Symbols

$a_{1,}$ a_{2}	dimensionless of the wave numbers in x- and y- directions
\mathbf{a}_{ij}	elements of the matrix
В	magnetic induction
C	concentration of the fluid
	2τ
C_{f}	local skin friction, $\frac{2\tau_o}{\rho U^2}$
C_{P}	specific heat at constant pressure
D	mass diffusivity
d	maximum value of boundary layer thickness
E	electric field
T-	TJ^2
E _C	Eckert number, $\frac{U^2}{C_p(T_o - T_{\infty})}$
f	dimensionless stream function of velocity
g	acceleration due to the gravity
Gr(x)	Grashof number, $\frac{g\beta_T(T-T_{\infty})x^3}{4v^2_{\infty}}$
H	magnetic field
H_1, H_2	Induced magnetic field components in x- and y- directions
	madeca magnetic field components in x and y-affections
J	current density
	- · · · · · · · · · · · · · · · · · · ·
J	current density thermal diffusivity, $\frac{k}{\rho \ C_p}$
J K	current density
J K k	current density thermal diffusivity, $\frac{k}{\rho \; C_{_p}}$ thermal conductivity
J K k k k k y	current density thermal diffusivity, $\frac{k}{\rho C_p}$ thermal conductivity wave numbers in x- and y -directions magnetic Prandtl number, $\frac{\nu}{\alpha_1}$
J K k k k y M	current density thermal diffusivity, $\frac{k}{\rho \ C_p}$ thermal conductivity wave numbers in x- and y -directions
J K k k k y M m"	thermal diffusivity, $\frac{k}{\rho C_p}$ thermal conductivity wave numbers in x- and y -directions magnetic Prandtl number, $\frac{\nu}{\alpha_1}$ rate of diffusion in y direction per unit area
J K k k k y M m"	thermal diffusivity, $\frac{k}{\rho C_p}$ thermal conductivity wave numbers in x- and y -directions magnetic Prandtl number, $\frac{v}{\alpha_1}$ rate of diffusion in y direction per unit area buoyancy ratio $\frac{\beta_c(C_o - C_\infty)}{\beta_T(T_o - T_\infty)}$,

Pr	Prandtl number, $\frac{v_{\infty}}{K_{\infty}}$
Q	involves the magnetic field, $\frac{\mu_m^2 H^2 \sigma d^2}{\nu \rho}$
Re	local Reynolds number, $\frac{Ux}{v}$
Rm	local magnetic Reynolds number, $\frac{Ux}{\alpha_1}$
S, uns	refer to the stable region and unstable
Sc	Schmidt number, $\frac{v_{\infty}}{D_{\infty}}$
Sh	Sherwood number
T	temperature of the fluid
t	time
U	free stream velocity
u, v	velocity components in x- and y- directions
x, y	coordinate system

Greek Litters

α, β_1, β_2 α_1	parameters depending on the nature of the fluid magnetic diffusivity
α_2	reciprocal of the magnetic Prandtl number, $\frac{\alpha_1}{\nu}$
β	magnetic number, $\frac{\mu_m H^2}{\rho U^2}$
$\beta_{C,} \beta_{T}$	coefficients of the thermal and mass expansion
δ	boundary layer thickness
γ	dimensionless concentration
η	dimensionless distance from the plate
λ	buoyancy paramerer, $\frac{Gr(x)}{[Re(x)]^2}$
μ	coefficient of viscosity
	•