Engineer: lamiaa eied sadek haroon

Date of Birth: 27 / 3 / 1978

Nationality: Egyptian

E-mail: <u>Lamiaaeied@gmail.com</u> or

Lamiaahosny2012@yahoo.com

Phone.:01222597836

Address: kattamya ring road opposite to Carrefour in front of Sama language school

Registration Date: 1 / 10 / 2009

Awarding Date: / /

Degree : Doctor of philosophy **Department :** Structural engineering

Supervisors: Prof. Dr. Ahmed M. Ragab

Dr. Mohammed Mohsen El- Attar

Dr. Dina M. Sadek, Assistant Professor, Building Materials and Quality

Control Institute - Housing and Building National Research Center

Examiners: Prof. Dr. Ahmed M. Ragab

Prof. Dr. Ousama Hodhod

Prof. Dr. Moniur Kamal, Professor - Faculty of Engineering, Menoufia University

Title of Thesis: Durability of concrete exposed to sea water attack

Key Words: Durability, compressive strength, salinity level, Red Sea

Summary:

Large numbers of concrete structures are in contact with marine environment, hence exposed to both physical and chemical detrimental effects during their service life. The aim of the thesis is to study the main factors affecting the behavior of concrete in marine environments such as the effect of cement content, cement type, using of silica fume as a mineral additive, exposure condition and salinity level of seawater on the behavior of concrete exposed to seawater attack. Fifteen concrete mixes were cast with three types of cements; ordinary Portland cement (OPC), sulfate resistant cement (SRC) and slag cement (SC), and three cement contents (i.e., 350, 400 and 450 kg/m³) were used. Ten percentage of silica fume was used as a mineral additive in some concrete mixes with cement content 400 and 450 kg/m³. After 28-days of water curing, the specimens were exposed to three exposure conditions (i.e., wet and dry, immersion and splash condition) in artificial Red and Dead Sea for 12 months and their properties were determined and compared with those of specimens immersed in tap water. It was found that as expected Dead Sea is more aggressive than Red Sea due to its higher salinity level. The highest reduction in the compressive strength was found in concrete mixes exposed to splash zone. Slag cement concrete mixes showed the lowest reduction in compressive strength after exposure to sea water attack, while ordinary Portland cement concrete mixes showed the highest reduction. Furthermore, the reduction in the compressive strength of concrete increased by the addition of silica fume to concrete.

Acknowledgement

The author wishes to express her sincere gratitude to her supervisors:

Prof. Dr. Ahmed Mahmoud Ragab, Professor of Strength of Materials, Structural Engineering Department, Faculty of Engineering, Cairo University.

Dr. Mohamed Mohsen Al-Attar, Assistant Professor of Strength of Materials, Structural Engineering Department of Structural Engineering, Faculty of Engineering, Cairo University

Dr. Dina Mahmoud Sadek, Assistant Professor, Building Materials and Quality Control Institute Housing and Building National Research Center

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	III
LIST OF FIGURES	IV
ABSTRACT	V
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. Objective	2
1.3. Thesis Outline	2
CHAPTER 2: LITERATURE REVIEW	3
2.1. General	4
2.2. Sea Water Attack	4
2.2.1. Mechanism of Sea Water Attack	8
2.3. Factors Governing Sea Water Attack	9
2.3.1. Cement type	9
2.3.2. Mineral Admixtures	12
2.3.2.1 Ground granulated blast-furnace slag cement (GGBS)	13
2.3.2.2. Silica fume (SF)	22
2.3.2.3. Water cement ratio.	32
CHAPTER 3: EXPERIMENTAL PROGRAM	38
3.1. Introduction	38
3.2. Program of Research Work	38
3.3. Characteristic of the used materials.	42
3.3.1 Cement	42

3.3.2. Fine Aggregate	44
3.3.3. Coarse Aggregate.	45
3.3.4. Silica fume (SF)	47
3.3.5. Water	47
3.3.6. Chemical admixtures	48
3.4 Concrete Mixes	49
3.4.1. Design of concrete mixes	49
3.4.2. Mixing, casting and curing	37
3.5. Test Specimens	51
3.6. Sea water attack	53
3.6.1. The set up of splash technique in Red Sea	58
3.7. Concrete Testing.	60
3.7.1. Slump test.	60
3.7.2. Compression test	60
3.7.3. Water absorption test.	62
3.7.4. Core test	62
3.7.5. Scanning electronic microscope test (SEM)	٦٤
3.7.5.1. The steps of the test were	66
CHAPTER 4: RESULTS AND DISCUSSION	68
4.1. Introduction	
4.2. Behavior of concrete immersed in tap water	
4.2.1. Compressive strength	
4.2.2. Water absorption	
4.3. Behavior of concrete exposed to sea water attack	
4.3.1. Compressive strength	
4.3.1.1. Effect of salinity level	

4.3.1.2. Effect of exposure condition	94
4.3.1.2.1 Immersion and wet and dry	94
4. 3.1.2.2. Comparison between immersion, wet and dry and splan	sh exposure
conditions	111
4.3.1.3 Effect of cement content	114
4.3.1.4 Effect of cement type	120
4.3.1.5 Effect of silica fume	127
4.3.2. Water absorption	136
CHAPTER5: SCANNING ELECTRON MICROSCOPE	154
5.1. General.	154
5.2. Theoretical program	154
5.2.1. Comparison between the theoretical and experimental work	value of the
compressive strength (in case of immersion condition)	157
5.2.2. Comparison between the theoretical and experimental value	of the
compressive strength (in case of wet and dry condition)	162
5.2.3. Comparison between the theoretical and experimental value	of the
compressive strength (in case of splash condition)	167
5.3. Scanning electron microscope results	175
5.3.1 Inspection of concrete samples exposed to immersion	176
5.3.2 Inspection of concrete samples exposed to cyclic of wetting	and
drying	186
5.3.3. Behavior of OPC concrete.	198
5.3.4. Effect of exposure condition.	199
5.3.5. Effect of cement type	199
5.3.6. Effect of silica fume	199

CHAPTER 6: THEORETICAL PROGRAM	201
6.1. General.	181
6.2. Theoretical program	181
6.3. Prediction of concrete age to become normal concrete	197
CHAPTER 7: CONCLUSION AND RECOMMENDATION	201
7.1: Conclusion.	201
7.2: Recommendations	201
7.3 Recommendations and areas for future research	204
REFERENCES	205
ARABIC SUMMERY	215

List of figures

		Page
Figure 2.1	Deterioration of concrete structure in marine environment	6
Figure 2.2	Relation between water penetration depth and OPC	
	replacement	15
Figure 2.3	Compressive strength of cement pastes as function of curing	
	time	17
Figure 2.4	Effect of exposure time on compressive strength for slag	
	cement mortars exposed to sea water of different	
	concentration (w/b=0.42)	19
Figure 2.5	Effect of exposure time on compressive strength for slag	
	cement mortars exposed to sea water of different	
	concentration (w/b=0.46)	20
Figure 2.6	Effect of exposure time on compressive strength for slag	
	cement mortars exposed to sea water of different	
	concentration (W/b=0.5)	20
Figure 2.7	Chloride migration in concrete subjected to 40% fc	21
Figure 2.8	Chloride migration in concrete subjected to 80% fc	22
Figure 2.9	Variation of mortar workability with silica fume content	24
Figure 2.10	Variation of 28 days cube and cylinder compressive	
	strength for different percentage of SF replacing	
	cement	26

		Page
Figure 2.11	Effect of silica fume percentage on concrete	
	compressive strength	27
Figure 2.12	Effect of SF on water permeability of concrete	30
Figure 2.13	Changes in chloride ion permeability of concrete with amount of silica fume replacement	31
Figure 2.14	Relation between water to cement ratio and compressive strength of concrete.	34
Figure 2.15	Relation between water to cement ratio and concrete sorptivity.	35
Figure 2.16	The relation between water to cement ratio and	
	compressive strength of concrete	36
Figure 2.17	Residual strength ratio after sea water effect	37
Figure 3.1	The out line of research work	40
Figure 3.2	The applied tests	41
Figure 3.3	Grading curve for fine aggregate	45
Figure 3.4	Grading curve for coarse aggregate	46
Figure 3.5	Tilting- drum mixer	51
Figure 3.6	Concrete cubes during casting	52
Figure 3.7	Finishing of concrete surface	52
Figure 3.8	Concrete cubes in water tank	53

		Page
Figure 3.9	Concrete specimens immersed in sea water	
	(a): Red Sea and (b): Dead Sea	57
Figure 3.10	Concrete specimens exposed to wetting and drying condition.	57
Figure 3.11	Unreinforced concrtete slabs exposed to splash condition.	58
Figure 3.12	Spraying of water in the center of slab	59
Figure 3.13	The slump test	60
Figure 3.14	The compression test.	61
Figure 3.15	Core test.	62
Figure 3.16	Concrete slab after taking core specimen	64
Figure 3.17	Scanning electron microscope apparatus	65
Figure 3.18	The specimen's preparation	66
Figure 4.1	Compressive strength development of ordinary Portland cement concrete.	70
Figure 4.2	Compressive strength development of slag cement concrete.	70
Figure 4.3	Compressive strength development of sulfate resistant concrete.	71
Figure 4.4	Effect of cement type on the 7-days compressive strength of concrete	72

		Page
Figure 4.5	Effect of cement type on the 28-days compressive strength of concrete	73
Figure 4.6	Effect of cement type on the 390-days compressive strength of concrete	73
Figure 4.7	Effect of cement type and content on concrete water absorption	75
Figure 4.8	Effect of salinity level on the compressive strength of concrete containing 350 kg/m³ ordinary Portland cement	79
Figure 4.9	Effect of salinity level on the compressive strength of concrete containing 400 kg/m³ ordinary Portland cement	80
Figure 4.10	Effect of salinity level on the compressive strength of concrete containing 450 kg/m³ ordinary Portland cement	81
Figure 4.11	Effect of salinity level on the compressive strength of concrete containing 400 kg/m³ ordinary Portland cement and 10% silica fume	82
Figure 4.12	Effect of salinity level on the compressive strength of concrete containing 450 kg/m³ ordinary Portland cement and 10% silica fume	83
Figure 4.13	Effect of salinity level on the compressive strength of concrete containing 350 kg/m ³ Sulfate resistant cement	84

		Pag
Figure 4.14	Effect of salinity level on the compressive strength of concrete containing 400 kg/m³ Sulfate resistant cement	85
Figure 4.15	Effect of salinity level on the compressive strength of concrete containing 450 kg/m³ Sulfate resistant cement.	86
Figure 4.16	Effect of salinity level on the compressive strength of concrete containing 400 kg/m³ Sulfate resistant cement and 10% silica fume.	87
Figure 4.17	Effect of salinity level on the compressive strength of concrete containing 450 kg/m³ Sulfate resistant cement and 10% silica fume	88
Figure 4.18	Effect of salinity level on the compressive strength of concrete containing 350 kg/m³ Slag cement	89
Figure 4.19	Effect of salinity level on the compressive strength of concrete containing 400 kg/m³ Slag cement	90
Figure 4.20	Effect of salinity level on the compressive strength of concrete containing 450 kg/m³ Slag cement	91
Figure 4.21	Effect of salinity level on the compressive strength of concrete containing 400 kg/m ³ Slag cement and 10% silica fume	92

Figure 4.22	concrete containing 450 kg/m ³ Slag cement and 10% silica fume	93
Figure 4.23	Effect of exposure condition on the compressive strength of concrete containing 350kg/m³ ordinary Portland cement	96
Figure 4.24	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ ordinary Portland cement	97
Figure 4.25	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ ordinary Portland cement	98
Figure 4.26	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ ordinary Portland cement plus 10% silica fume	99
Figure 4.27	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ ordinary Portland cement plus 10% silica fume	100
Figure 4.28	Effect of exposure condition on the compressive strength of concrete containing 350kg/m³ sulfate resistant cement.	101
Figure 4.29	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ sulfate resistant cement.	102

		Page
Figure 4.30	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ sulfate resistant cement.	103
Figure 4.31	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ sulfate resistant cement plus 10% silica fume	104
Figure 4.32	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ sulfate resistant cement plus 10% silica fume	105
Figure 4.33	Effect of exposure condition on the compressive strength of concrete containing 350kg/m³ slag cement	106
Figure 4.34	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ slag cement.	107
Figure 4.35	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ Slag cement.	108
Figure 4.36	Effect of exposure condition on the compressive strength of concrete containing 400kg/m³ slag cement plus 10% silica fume	109
Figure 4.37	Effect of exposure condition on the compressive strength of concrete containing 450kg/m³ slag cement plus 10% silica fume	110