The Role of Doppler US In Surveillance of Vascular Access in Hemodialysis Patients And Determination of Proper Timing For Radiological Intervention

Thesis

Submitted for Fulfillment of Master Degree in

Radiodiagnosis

By

Mirna Adel Fahmy Messiha

M.B.B.S

Supervisors

Prof. Dr .Ayman Ismail Kamel

Professor of Radiodiagnosis

Faculty of medicine

Cairo University

A.Prof.Dr Omar Abd El Aziz Hamada

Assistant professor of Radiodiagnosis

Faculty of medicine

Cairo University

Faculty of Medicine

Cairo University

2015

ACKNOLEGEMENTS

Praise be to God, the creator and sustainer of the world. It is but with His help that this piece of work could come to light.

Foremost; I would like to express my deepest gratitude to **Prof. Dr. Ayman Ismail Kamel**, professor of Radiodiagnosis, faculty of medicine, Cairo University; for choosing this interesting topic and for his guidance, encouragement, and continuous support that were of great value throughout the work.

My deepest appreciation to **Dr. Omar Abd El Aziz**, assistant professor of Radiodiagnosis, Cairo University, for his encouragement, support, guidance, kind advice and help throughout supervising this work.

I am extremely grateful to **Prof. Dr. Sameh Hanna, Prof. Dr. Mohamed Mostafa Hamed** for their endless support, encouragement, continuous help and kind advice throughout the work.

I have to thank Assistant **Prof. Dr. Sahier Omar El Khashab**, Assistant professor of Internal Medicine and Nephrology, for her cooperation, dedication and the help she showed throughout the work.

Finally, I would like also to express my thanks to my colleagues in the Radiology department for their cooperation and support, my family for their continuous encouragement, my husband **Dr. George Edward** that I especially appreciate his guidance, attention to details, continuous help and support in all stages of this thesis. This thesis would not have been possible without his patience, encouragement and valuable effort.

Abstract

Keywords:-CDUS-EDV-PSV- AVM-GFR

All patients were examined post-operative AVF either for maturity or presence of complications. Assessment with arterial diameter, fistula diameter, velocity at the fistula, 2cm proximal, Volume flow rate were measured at anastomosis site and during hemodialysis for shunt complication. Doppler indices (PSV, EDV and RI) were measured at the site of anastomosis, draining veins and afferent arteries. Volume of blood flow was also measured at the site of anastomosis. CDUS is a noninvasive technique that allows the assessment of both anatomy and hemodynamics of an AVF. This technique is free of any known risk, cheap and can be used at the bedside. CDUS outlines the AVF lumen and allows definition of lumen dimensions and detection of luminal encroachment

Contents

Contents	Page
List of abbreviations	I
List of tables	IV
List of figures	V
Introduction	1
Aim of work	4
Review of literature:	
✓ Vascular supply of the upper limb	5
✓ Overview of hemodialysis and vascular access	20
✓ Doppler ultrasonography physics and common	
artifacts	48
✓ The Role of Doppler ultrasonography in maturity	
assessment and evaluation of uncomplicated	59
arteriovenous access	
✓ role of Doppler US in evaluation and selection of	
complicated arteriovenous fistulas	69
for intervention	
Patients & methods	105
Results	112
Case presentation	122
Discussion	152
Summary and conclusion	161
References	163
Arabic summary	181

List of Abbreviations

AA Autogenous access.

AV Arteriovenous

AVF Arteriovenous fistula

AVG Arteriovenous graft

AVM Arteriovenous malformation

BB Brachio-basilic

BC Brachio-cephalic

CCDI Colour coded Doppler imaging

CDU, CDUS | Colour Doppler ultrasound

CFDI Colour flow Doppler imaging

CFDU, Colour flow Doppler ultrasound

CFDUS Colour flow Doppler ultrasound

CHD Chronic hemodialysis

CRF Chronic renal failure

CW Continuous wave

DASS Dialysis associated steal syndrome.

DAVF Direct arteriovenous fistula

DHIS Distal hypoperfusion ischemic syndrome

DSA Digital subtraction angiography

DRIL Distal revascularization-internal ligation

DVT Deep venous thrombosis

EDV End diastolic velocity.

ESRD End stage renal disease.

ESRF End stage renal failure.

GAVF Graft arteriovenous fistula.

GFR Glomerular filtration rate.

GSV Great saphenous vein.

HD Hemodialysis.

HF Heart failure.

HIV Human immunodeficiency syndrome.

HUV Human umbilical vein.

HUVG Human umbilical vein graft.

IH Intima hyperplasia.

IMT Intima media thickness.

KDOQI Kidney disease outcome quality initiative.

LVEDV Left ventricular end diastolic volume.

LVH Left ventricular hypertrophy.

MAP Mean arterial pressure.

NKF National kidney foundation.

NO Nitric oxide.

PD Peritoneal dialysis.

PRF Pulse repetition frequency.

PSV Peak systolic velocity.

PTA Percutaneous transluminal angioplasty.

PTFE Polytetrafluoroethylene.

PW Pulsed wave.

RC Radio-cephalic.

RCAVF Radio-cephalic arteriovenous fistula.

RH Reactive hyperemia.

RI Resistivity index.

RRT Renal replacement therapy.

SD Standard deviation.

US Ultrasound.

USA United States of America.

VA	Vascular access.
VCP	Venous congestion pressure.
VP	Venous pressure.
VSMC	Vascular smooth muscle contraction.

List of Tables

Table	Title	Page
1.	Anatomical variations of the upper limb arteries	13
2.	Classification of Chronic Kidney Disease	20
3.	Dialysis access method advantages and disadvantages	43
4.	Vascular Access in Children	45
5.	Hemodialysis access placement in preferential order from most to least desirable	47
6.	Factors affecting colour flow image	50
7.	Factors affecting the spectral Doppler image	53
8.	The most usable features addressed by duplex Doppler ultrasound	59
9.	Minimal vascular requirement for a successful AVF	68
10.	Clinical features and incidence of the most common complications of AVFs	71-72
11.	Grading severity of AV complication	72-74
12.	Colour Doppler ultrasound characteristics of haemodynamically relevant stenosis	83-84
13.	Classification of steal syndrome	93
14.	Important clinical dialysis access problem, possible causes, and diagnostic role of duplex scan	97-98

List of Figures

Figures		Page
1	Anatomy of Subclavian artery	6
2	Anatomy of Axillary artery	7
3	Branches of Axillary artery	9
4	Anatomy of brachial artery	10
5	Arteries of forearm	13
6	Venous anatomy of upper limb	16
7	Antecubital fossa superficial veins	16
8	The veins of the right axilla, viewed from in front	19
9	These images depict the six ESRD treatment modality	21
	options available for the patient, in approximate order	
	of overall outcome effectiveness (clockwise starting	
	from transplant). Many confounding forces influence	
	the decision. During the life of an ESRD patient three	
	or even four of these life-sustaining treatments are	
	sequentially or repeatedly used	
10	Diagram reveals the principle idea of the dialysis	22
	Machine	
11	Arterial and venous needles	24
12	Peritoneal dialysis	25
13	Venous catheter for temporary hemodialysis access	28
14	External arteriovenous shunt:	29
15	Common types of Autogenous AVF	30
16	A normal radiocephalic fistula with the anastomosis	31
	•	
	proximal to the wrist joint	

17	Side to side & Arterial side to vein end anastomosis varieties	32
18	Diagrams illustrate the types of arteriovenous anastomosis,	32
19	The Autogenous posterior radial branch-cephalic fistula	33
20	A) Sketch of a side to side brachiocephalic arteriovenous fistula. (B) The alternative end to side fistula performed when tension prevents side to side anastomosis	35
21	A native arteriovenous fistula in the elbow region between artery brachialis and cephalic vein	36
22	Arterialization of the cephalic and basilic veins following a radio-median cubital vein arteriovenous fistula at the elbow	37
23	Brachial-basilic fistula	38
24	Site of ulnar basilic fistula	38
25	Arteriovenous conduits of expanded poly-tetra-flouro- ethylene used to create subcutaneous loops in the forearm	40
26	Expanded Polytetraflouroethylene (PTFE)	42
27	Axillorenal arteriovenous graft for hemodialysis. Frontal and lateral views (inset).	44
28	Ultrasound velocity measurement.	48
29	Doppler ultrasound: Doppler ultrasound measures the movement of the scatterers through the beam as a phase change in the received signal	49

30	Color flow (top) and power Doppler (bottom) images	50
	of the same phantom under the same conditions.	
31	Color Power "Angio" of a submucous fibroid, note the	51
	small vessels inside the tumor.	
32	Doppler spectra of uterine artery flow.	52
33	Setting up the sample volume .Sonogram of the descending aorta with the angle correction the peak velocities could be measured	53
34	Artifactual display of flow beneath the baseline (arrow)	54
	in this image is due to improper Doppler gain setting	
35	Aliasing displayed on a spectral Doppler waveform.	54-55
36	Tissue vibration (red arrow) in tissues adjacent to	55
	common femoral vein during augmentation	
37	Twinkle artifact (red arrow) behind a stone at the ureterovesicular junction.	56
38	Flash artifact (arrow) visualized due to motion of	56
	bowel gas anterior to IVC (inferior vena Cava)	
39	Flow in portal vein seen on both sides of baseline due	57
	to vascular motion artifact	
40	Spurious spectral broadening	57
41	Artifactual appearance of thrombosis in IVC (arrow)	58
	due to PRF/velocity scale setting being too high to	
	display low-velocity slow venous flow	
42	Normal arteiovenous fistula. Transverse section	63
	through arterial (A) to venous (V) anastomosis	
43	Duplex sonogram of the radial artery demonstrates	64
	typical monophasic flow supplying a low-resistance	

	radiocephalic fistula.	
44	Color Doppler ultrasound scans of the PVAG.	65
45	A typical dialysis access graft has blood flow velocities	67
	above 100 to 200 cm/sec	
46	Ultrasound image of (a) aneurysm (b) pseudo aneurysm	79
47	Types of stenosis according to the site.	82
48	Stenosis of dialysis access:	80
49	A high-grade stenosis is noted just distal to the takeoff of a branch	80
50	B-mode image of a thrombosis in the venous outflow tract,	89
51	View of the lower arm depicting the radial artery and the nearly completely thrombosed Cimino shunt	90
52	Steal phenomenon' in the radial artery at the anastomotic region	93
53	Color Doppler of an anechoic seroma (star) generating a post-anastomotic venous stenosis (arrow)	96
54A	CDUS and spectral analysis at the radial artery proximal to the anastomosis, normal flow and wave pattern.	122
54B	CDUS and spectral analysis at the site of anastomosis	123
54C	CDUS shows hypoechogenic mass (thrombus) occluding the venous lumen	123
54D	CDUS and spectral analysis at the venous side distal to the thrombus showing sluggish flow	124
55A	DSA shows injection of contrast from the venous side revealed complete occlusion of the cephalic vein with no passage of contrast to the arterial side (arrow).	124

55B	After repeated trials of successful passage of the wire	125
	through the thrombus the contrast started to cross to the	
	arterial side through the constructed RCF (arrow).	
	After repeated attempts of PTA using balloons of	125
55C&D	increasing sizes lead to regain of patency of the AVF	
	with almost 50%.	
55E	Another session of repeated attempts of PTA using	126
	balloons of increasing sizes lead to regain of patency of	
	the AVF with almost 75%.	
56	CDUS shows Patent radiocephalic fistula	126
57A	CDUS shows RCF where the fistula diameter	127
	measuring1.3mm.	
57B	RCF; PSV at the fistula measures 400cm/sec.	128
57C	RCF; PSV at the artery 2 cm proximal to the fistula	128
	measures 100cm/sec. i.e. PSV Ratio greater than 4	
58A	DSA shows injection of contrast from the venous side	129
	revealed complete occlusion of the cephalic vein with	
	no passage of contrast to the arterial side (arrow).	
58B	After injection of contrast from the arterial side the	129
	contrast started to cross to the venous side through the	
	constructed RCF showing significant stricture.	
59 A-B	Fluoroscopy shows Repeated attempts of balloon	130
	dilatation of stenotic RC AVF with adequate but	
	incomplete dilatation	
60	CDUS after PTA shows aliasing at site of fistula	131
	denoting presence of residual stenosis.	
61A-D	CDUS showing Left BC fistula with cephalic vein	132
	thrombosis. An echogenic mass is seen totally	
	occluding the cephalic vein with sluggish flow in the	
60 1 6	vein.	100
62 A-C	Lt. Brachial-cephalic fistula showing stenosis of the	133
	venous outflow tract. B mode with luminal narrowing	
	and thickened walls. Color Doppler revealing aliasing	
	and spectral Doppler showing turbulent flow with	
	increased PSV.	
63	DSA shows Long-segment outflow vein stenosis before	134
	percutaneous transluminal angioplasty	
64	Image obtained after percutaneous transluminal	134
	angioplasty in a long-segment stenosis.	

65	CDUS shows Right Brachio-Cephalic fistula.	135
66A-E	CDUS shows RT BCF with multiple aneurysmal dilatations showing an echogenic thrombi within.	136
67	CT angiography of the right upper limb AV system	137
68	CDUS shows Left Brachio-Cephalic fistula	138
69A-C	CDUS Left Brachio-Cephalic fistula with an	139
	aneurysmal dilatation showing an echogenic thrombi within	
70A-E	CDUS shows thrombosed whole BB synthetic graft extending to deep venous system to the subclavian vein	141
71A&B	CDUS shows RCF where the fistula diameter measuring 6mm	142
72A&B	CDUS and spectral analysis at the site of anastomosis & at the radial artery proximal to the anastomosis, showing normal flow and wave pattern	142
73A-C	CDUS revealed occluded cephalic vein distal to anastomosis by echogenic thrombus within.	143
74A&B	CDUS revealed patent Brachio-Axillary graft, however a pseudoaneurysm formation is noted at anastomotic site	144
75A&B	CDUS revealed peri-graft leakage.	144
76A&B	US revealed overlying subcutaneous cellulitis ,inflammation and abscess formation	145
77A&B	B-mode &CDUS of Rt Brachio-cephalic AVF	146
78A&B	US examination revealing multiple aneurysmal dilatations of the cephalic vein distal to anastomosis (measuring: 1.2-3 cm in diameter).	146
79A-C	B-mode, CDUS & spectral analysis of Lt. Radio- cephalic AVF.	147