

Intraoral Digital Radiography versus Cone Beam Computed Tomography (CBCT) in Detection and Measurement of Simulated Periapical Lesions: an In Vitro Study

الأشعة الرقمية داخل الفم مقابل الأشعة المقطعية ذات الشعاع المخروطي بالحاسوب في الكشف عن و قياس الآفات الذروية المحاكاة: دراسة مختبرية

Thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University, for partial fulfillment of requirements for Master Degree in Oral Radiology

BY

Arwa Ibrahim Ramadan

(B.D.S) 2008

Proposal Code: ORAD-702

Supervisors

Dr. Sahar Hosny El Dessouky

Associate Professor Oral Radiology Department,

Faculty of Oral and Dental medicine,

Cairo University

Dr. Dina Mohamed El Beshlawy

Lecturer, Oral Radiology Department,

Faculty of Oral and Dental Medicine,

Cairo University

Dedication To my beloved family My dear parents My deeply loved husband Sherif My lovely kids Lama and Yahia My sisters My mother and father in law For their continuous Love, Support And Care Throughout the years

Acknowledgement

All praise is due to mighty Allah who has showered me with his bountiful blessings.

I would like to express my profound appreciation and deep gratitude to *Dr. Sahar Hosney* Associate professor of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, not only for her help, support, care, guidance and scientific knowledge that she provided me throughout the study but also for the valuable lessons of life she has taught me.

I would like to express my special appreciation and thanks to *Dr. Dina El Beshlawy*, Lecturer of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, who has been a tremendous mentor for me. I would like to thank her for encouraging me to complete my research and for pushing me to grow as a researcher. Her advice on both research as well as on my career has been priceless.

Special thanks extend to *Dr. Amr Hosney*, Lecturer of Dental Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his help during the practical part of the study.

I would like to thank my friends, *Enas Anter* and *Hager El Sarawy* Assistant lecturers of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University who supported me and incented me to strive towards my goal.

I would like to thank all my colleagues and staff members of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, for their continuous help and care throughout the whole study.

List of Contents

Chapter	Page
1. Introduction	1
2. Review of Literature	5
3. Aim of the Study	73
4. Materials and Methods	74
5. Results	87
6. Discussion	101
7. Summary and Conclusion	109
8. Recommendations	112
9. References	113
10.Arabic Summary	

List of Figures

Figure	Title	Page
number		number
Figure 1	Progression of periapical diseases through different stages of	8
	the disease process	
Figure 2	Vascular initial response, during inflammation. Temporary	10
	contraction of the microcirculation system, followed by an	
	immediate vasodilatation. Erythrocytes migrate to the center	
	of the vessel and leucocytes to the periphery. Histamine	
	induced contraction of the endothelium causes the apparition	
	of cracks on the vessel walls	
Figure 3	Plasma extravasation lets plasma into the surrounding tissue	10
	where resulting edema increases pressure on nerve fibers and	
	causes pain	
Figure 4	Comparison of image quality in panoramic radiograph (A&	17
	B) and in periapical film (C) ((Huumonen & Ørstavik 2002)	
Figure 5	Tomographic images (A, C) in comparison with periapical	18
	radiographs (B, D). The tomographic images appear more	
	blurred, but show a section of the tooth/jaw segment rather	
	than the whole traverse that creates the periapical image	
Figure 6	(A& B) Intraoral radiographs of the upper left first molar	19
	showing periapical lesion. (C& D) two cropped computed-	
	tomography images showing more detailed information about	
	the condition of the tooth, e.g. the large lesion at the palatal	
	root	
Figure 7	T2-weighted (A) and contrast-enhanced T1-weighted images	20
	(B) of a patient with a periapical granuloma (arrow)	
Figure 8	(A)Intraoral periapical radiograph shows a well-	21
	circumscribed radiolucent periapical lesion (arrow) without a	
	sclerotic border. (B) Ultrasonography with color Doppler and	
	power Doppler shows a poorly defined hypoechoic lesion	
	(arrow) exhibiting a rich vascular supply	
Figure 9	Scintigraphic images of the acute periapical lesion. (A)	22
- '8''''	cropped panoramic image for the involved tooth, (B& C)	- -
	horizontal section and profile show 'hot spots', i.e. high	
	intake of radionuclides in the tissues	
	intake of radioffactions in the dissues	

Figure 10	CCD sensors with different sizes simulating periapical films	23
Figure 11	PSP intraoral sensors with different sizes (0, 1, 2 and 3)	24
	similar to conventional films	
Figure 12	Schematic representation of a digital image. (A) X-ray	26
	shadow. (B) Image as detected by the digital sensor; each	
	square is a pixel. (C) Numerical representation of pixel values	
	sent to the computer. (D) Digital image on the computer	
	screen	
Figure 13	Direct intraoral digital imaging	27
Figure 14	Diagram representing direct CCD sensor array	28
Figure 15	Diagram representing the indirect digital imaging	29
Figure 16	Underexposed image (left) and the same image after contrast optimization (right)	31
Figure 17	As this radiograph gradually gets darker, the lesions (arrows)	31
	at the apices of the first molar become more	
Figure 19 Figure 20	(A) Original digital image of a periapical lesion and root canal obturation, (B) Pseudo color digital image shows obturation in the apical third of the root canal and resorption of the root A) Original digital image of a periapical lesion and root canal obturation, (B) Pseudo color digital image shows obturation in the apical third of the root canal and resorption of the root apex Original digital images of dental implants: (A) base and (B) follow up. Subtraction result (C) showing angular bone resorption related to implants (arrow) Example of ideal digital subtraction radiography. (A) Initial digital image. (B) Second radiograph obtained a few weeks	34
Figure 21	later, the arrow is pointing at a lesion. (C) The lesion itself, made more noticeable by the removal of anatomical noise from the image diagrammatic representation of CBCT imaging; a coneshaped beam rotates 360 degrees around patient's head	42
Figure 22	Examples of different CBCT machines according to patient positioning option; seated (at the left), supine (at the middle), standing (at the right)	43

Figure 23	Localized region (left), Interarch (middle) and Maxillofacial (right) FOVs	45
Figure 24	Comparison of volume data sets obtained isotropically (left) in CBCT and anisotropically (right) in CT	49
Figure 25	Bilateral linear oblique multiplanar reformation through lateral and medial poles of the mandibular condyle on the axial image (a) providing corrected coronal, limited field-of- view, thin-slice temporomandibular views (b) demonstrating right condylar hyperplasia	51
Figure 26	Curved MPR simulated "panoramic" image from CBCT showing CBCT applications in temporomandibular joint assessment. Reformatted "panoramic" image showing right side condyle differences in shape compared with normal left	52
Figure 27	Reformatted panoramic image (a) providing reference for multiple narrow trans-axial thin cross-sectional slices (b) of radiolucent bony pathology in the left mandible, demonstrating bucco-lingual expansion and location of the inferior alveolar canal	53
Figure 28	"Ray sum" simulated lateral cephalometric projection	54
Figure 29	Visualization options for a cone-beam computed tomography volume. Left picture: Visualization of the full data volume by means of a shaded surface display method with thresholds set to show the soft tissues. Middle picture: Visualization of the full data volume by means of a shaded surface display with the threshold set to show hard tissues (bone and teeth) only. Right picture: The volume rendering method. The data attenuation values corresponding to the soft tissues were made partially transparent, allowing for visualization of the underlying skeleton and teeth	55
Figure 30	(A) Typical implant planning image set shows a "generic" implant fixture orientation in relation to the inferior alveolar nerve. (B) A close-up image of the case above isolating the 3D color volume and proposed implant placement visualization. (C) A 3D colorized view to show the submandibular fossa in relation to the implant site. (D) A colorized "slab" rendering allows the clinician to actually	57

	see the canal and the desired position of the intended implant	
	fixture. Precise measurements can now be made	
Figure 31	CBCT images of a patient with a mandibular cyst. (A) Mesial view of right half of the mandible in a surface mode. (B) Anterior view of the mandible in the surface mode. (C) Lingual view of the mandible in surface mode. (D) Radiographic cross-sectional view of the maxilla and mandible. (E) reformatted panoramic view	58
Figure 32	Patient with unilateral cleft palate with tooth impaction at (A) Axial cut, (B) Sagittal section, (C) coronal section and (D) 3D volume	59
Figure 33	Curved MPR simulated "panoramic" image from CBCT showing CBCT applications in temporomandibular joint assessment. Reformatted "panoramic" image (top) showing right side condyle difference in shape compared with normal left. Cropped paracoronal reformatted images clearly showing subcortical cystic defects in surface of right condyle as compared with the left, indicative of active degenerative joint disease	60
Figure 34	Three-dimensional depiction of periodontal bone loss around a maxillary second premolar tooth. (A)Reformatted panorama. (B) The arrows indicate the extent of bone loss on the mesial and distal aspects of the tooth. (C) The arrows indicate the extent of bone loss on the facial and palatal tooth aspects	61
Figure 35	Preoperative (A) and postoperative (D) soft tissue profile view in surface mode. Preoperative (B) and postoperative (E) radiographic views of the patient's right half. Preoperative (C) and Postoperative (F) radiographic views of the patient's left half	62
Figure 36	Volumetric segmentation of the airway in three dimensions. A. Left, frontal and right views of the segmented airway space. B. Three-dimensional superimposition showing airway dimensions	63
Figure 37	(A) The patient is complaining about a painful sensation in her left maxillary first molar. No periapical lesion can be detected on the periapical radiograph. (B) A small apical	64

I alsi	on was diagnosed with the sagittal CBT image at the obuccal root of the left maxillary first molar. In addition, a	
	tht thickening of the sinus membrane can be seen	
	ative image artifact reduction with CBCT (a) axial (top)	67
	cross-sectional images (lower) of the mandibular arch	
	h implants compared with conventional CT (b) axial (top)	
	cross-sectional (lower) images of maxillary arch with	
	blants	
Figure 39 Exa	ample of beam hardening. Right picture: in CBCT	68
refo	ormatted panorama. <i>Left picture</i> : in cropped panorama	
Figure 40 Noi	ise reducing image contrast	69
Figure 41 Con	mparison of image quality of sagittal (upper) and 3D	69
	wer) renderings reconstructed from 300 projection images	
	ng conventional Feldkamp back projection (FBP) (left	
col	umn) and an iterative reconstruction called algebraic	
rece	onstruction technique (ART) (right column). While ART	
req	uires greater computing power, it also reduces artifacts	
req	uiring fewer projections to conduct the reconstruction	
(eq	uals less dose) and is less sensitive to common patient	
mo	vement and metal artifacts	
Figure 42 Der	ntsply round burs (2, 3&4mm)	75
Figure 43 (A)	The milling machine used during the mechanical	76
prep	aration of the simulated periapical lesions (B) The milling	
mac	hine after mandible orientation and fixation with the	
rubb	er base	
Figure 44 Fol	ded pink wax thickness measured by means of a digital	77
cali	per	
Figure 45 One	e of the investigated dry mandibles after wax fixation on	77
the	buccal side	
Figure 46 Dig	gora Optime sensor size 2	78
Figure 47 XC	P film holder	78
Figure 48 one	of the investigated mandible during digital periapical	79
ima	aging using parallel technique	

Figure 49	Digora Optime scanner	79
Figure 50	Immediate image display on the PC monitor after sensor scanning	79
Figure 51	(A) Cone Beam Computed Tomography Imaging unit. (B) One of the investigated mandibles while positioned on the CBCT imaging unit	80
Figure 52	Measurement of a size 3 simulated lesion periapical to the left lateral incisor's socket on a digital periapical image using Digora software	81
Figure 53	Measurement of two size 4 mm simulated lesions periapical to right first and second premolars sockets using Digora software (the root of an extracted tooth was used as a landmark to identify the simulated lesions site)	82
Figure 54	Measurement of three size 4mm simulated lesions periapical to right first, second and third molars sockets using Digora software	82
Figure 55	Implant screen displaying the volumetric data set as: (A) axial image (B) reformatted panorama, (C) 3D volumetric image and (D) serial transplanar image slices	84
Figure 56	Measurement of seven simulated lesions size 3mm (at the anterior, premolar and molar regions) on a selected reformatted panoramic image	84
Figure 57	Measurement of a size 3mm simulated lesion periapical to a canine socket on the selected cross sectional image	84
Figure 58	Measurement of a size 3mm simulated lesion periapical to a first premolar socket on the selected cross sectional image	85
Figure 59	Measurement of a size 3mm simulated lesion periapical to a first molar socket on the selected cross sectional image	85
Figure 60	Bar chart representing comparison between detectability of size 2 simulated periapical lesions by the two modalities	91
Figure 61	Bar chart representing comparison between detectability of size 3 simulated periapical lesions by the two modalities	93
Figure 62	Bar chart representing comparison between detectability of size 4 simulated periapical lesions two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	95

Figure 63	Bar chart representing comparison between size 2 simulated periapical lesions measurements two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	96
Figure 64	Bar chart representing comparison between size 3 simulated periapical lesions measurements two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	98
Figure 65	Bar chart representing comparison between size 4 simulated periapical lesion measurements two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	100

List of tables

Table	Title	Page
number		number
Table 1	Abbott's clinical classification of the status of the	14
	periradicular tissues	
Table 2	Results of Kappa statistic for the agreement	87
	between the observers in correct detection of the	
	simulated periapical lesions	
Table 3	Results of Cronbach's alpha reliability coefficient	88
	for the agreement between the observers in correct	
	simulated periapical lesions size measurement.	
Table 4	The frequencies (n), percentages (%) and results of	90
	Friedman's test for comparison between	
	detectability of size 2 simulated periapical lesions	
	by the two modalities digital radiography and	
	CBCT (reformatted panoramic& cross sectional	
	views)	
Table 5	The frequencies (n), percentages (%) and results of	92
	Friedman's test for comparison between	
	detectability of size 3 simulated periapical lesions	
	by the two modalities digital radiography and	
	CBCT (reformatted panoramic& cross sectional	
	views)	
Table 6	The frequencies (n), percentages (%) and results of	94
1 uote o	Friedman's test for comparison between	74
	detectability of size 4 simulated periapical lesions	
	by two modalities digital radiography and CBCT	
	(reformatted panoramic& cross sectional views)	
Table 7	The mean, standard deviation values and results of	96
1 avie /	repeated measures ANOVA test for comparison	70
	_	
	between size 2 simulated periapical lesion	
	measurements by the two modalities digital	
	radiography and CBCT (reformatted panoramic&	
m 11 ^	cross sectional views)	0.0
Table 8	The mean, standard deviation values and results of	98
	repeated measures ANOVA and Tukey's tests for	

	comparison between size 3 simulated periapical lesion measurements by the two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	
Table 9	The mean, standard deviation values and results of repeated measures ANOVA and Tukey's tests for comparison between size 4 simulated periapical lesion measurements by the two modalities digital radiography and CBCT (reformatted panoramic& cross sectional views)	100