Gender Based Differences in Clinical Features and Mortalities in One-month Duration in Acute ST Elevation Myocardial Infarction Patients

Thesis

Submitted in partial fulfillment of Master degree in Cardiology

By

Farag Mohammed Farag Elgallal

M.B.B.CH Medical Arab University

Under Supervision of

Prof. Ali Ramzi Abd Almajid

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Tarek Rashid Mohamed Amin

Lecturer of Cardiology
Faculty of Medicine – Ain shams University

Faculty of Medicine
Ain Shams University
2016

Acknowledgments

First of all and above all great thanks to ALLAH whose blessings on me cannot be counted.

The sincerest thanks, deepest appreciation and greatest admiration to my **Prof. Ali Ramzi Abd Almajid**, Professor of Cardiology, Faculty of Medicine – Ain Shams University, for his constructive keen supervision, Fruitful criticism, continuous support and encouragement to complete this work. I really have the honor to complete this work under his supervision.

I feel greatly indebted to **Dr. Tarek Rashid Mohamed Amin,** Lecturer of Cardiology, Faculty of
Medicine – Ain shams University, for his trustful help,
sincere guidance, continuous support and assistance.

Finally, I would like to thank all patients who participated in the study.

Last but not least, I can't forget to thank all members of my family, specially my Parents for their support and care

Candidate

🥒 Farag Mohammed Farag Elgallal

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	viii
Introduction	1
Aim of the Work	3
Review of Literature	
Acute Myocardial Infarction	4
Gender and Myocardial Infarction	49
Management of Myocardial Infarction	82
Patients and Methods	90
Results	96
Discussion	116
Conclusion	125
Recommendations	126
Summary	127
References	130
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACC	American colleague of cardiology	
ACCP	American colleague of clinical pharmacy	
ACE	Angiotensin converting enzyme	
ACEP	American Colleague of Emergency Physicians	
ACS	Acute coronary syndrome	
ACT	Activated clotting time	
AHA	American Heart Association	
ADP	Adenosine diphosphate receptor	
AMI	Acute myocardial infarction	
aPPT	Activated partial thromboplastin time	
BP	Blood pressure	
CABG	Coronary artery bypass grafting	
CAD	Coronary artery disease	
CADILLAC	Controlled Abciximab and Device Investigation	
CADILLAC	to Lower Late Angioplasty Complications	
CAPTIM	Comparison of Angioplasty and Prehospital	
CALIM	Thrombolysis in Acute Myocardial Infarction trial	
CT	Computed tomography	
CBC	Complete blood count	
CHD	Coronary heart disease	
CHF	Congestive heart failure	
CK	Creatine kinase	
CCU	Coronary care unit	
CRP	C-reactive protein	
cTnI	Cardiac troponin I	
CVA	Cerebrovascular accident	
	Danish Multicenter Randomized Study on	
DANAMI	Thrombolytic Therapy versus Acute Coronary	
	Angioplasty in Acute Myocardial Infarction	

DM Diabetes mellitus

DAPT Dual antiplatelet therapy

DES Drug eluting stent

EHS_ACS European heart acute coronary syndrome

ECG Electrocardiography

EMS Emergency medical service
ESC European Society of cardiology

EF Ejection fractionFBS Fasting blood sugarFMC First medical contact

FTT Fibrinolytic Therapy Trialists

GP IIb/IIIa Glycoprotein IIb/IIIa

Global Utilization of Streptokinase and t-PA for

Occluded coronary arteries

GRACE Global registry of acute coronary syndrome

HDL High density lipoprotein

HTN Hypertension

I post Ischemic postconditioning IABP Intra-aortic balloon pump ICH Intracranial hemorrhage IHD Ischemic heart disease

ISIS International study of infarct survival

IPC Ischemic preconditioning IRA Infarct related artery

IV Intravenous

LAD Left anterior descending artery

LBBB Left bundle branch block

LCA Left coronary artery
LCX Left circumflex artery
LDL Low density lipoprotein

LM Left main

LMWH Low molecular weight heparin

LV Left ventricle

LVEF Left ventricular ejection fraction

LVH Left ventricular hypertrophy
MBG Myocardial blush grade

MITI National registry of myocardial infarction
MCE Myocardial contrast echocardiography

MEK Mitogen activated protein extracellular signal

regulated kinases

m-PTP Mitochondrial transition poreMVO Microvascular obstruction

NO Nitric oxide

NRMI National registry of myocardial infarction NSAIDS Non-steroidal anti-inflammatory drugs

NSTEMI Non-ST segment elevation myocardial infarction

NCEP National cholesterol education program
PCI Percutaneous coronary intervention

PFA Platelet function test

P Probability of chance significant

POC Postconditioning

PTCA Percutaneous transluminal coronary angioplasty

PTD Pulsed tissue Doppler
RBBB Right bundle branch block

r-pAReteplase plasminogen activatorRCTsRandomized controlled trials

RESTORE Randomized Efficacy Study of Tirofiban for

Outcomes and Restenosis trial

RCA Right coronary artery SD Standard deviation

SPCT Single photon emission tomography

STEMI ST segment elevation myocardial infarction

STR ST segment resolution TFGs TIMI flow grades

TNK-tpa Tenecteplase tissue plasminogen activator

t-PA Tissue plasminogen activator **TMPG** TIMI myocardial perfusion grade

TIMI Thrombolysis in myocardial infarction

UA Unstable angina

UFH Unfractionated heparin

VD Vessel disease

Who Monica World health organization multinational

monitoring of trends and determinants of

cardiovascular disease

WISE Women Ischemic Syndrome Evaluation

WHO World health organization

List of Tables

Cable No	v. Eitle	Page No.
Table (1):	Aspects of definitions for myocardial infarction by differen	C
Table (2):	Framework for selecting a reperf in patients with STEMI	•••
Table (3):	Trials comparing in-hospital versus transfer for PCI in patier less than 12 hours from the onset	nts presenting
Table (4):	Lipid, coagulation, and fibrinolytic seen in diabetes.	
Table (5):	Risk factors for cardiovascula women.	
Table (6):	The differences in cardiovas presentation and outcome in wom Men (M)	en (W) versus
Table (7):	DM status of the studied patients gender	_
Table (8):	HTN status of the studied patient gender	•
Table (9):	Smoking status of the stude according to gender	
Table (10):	Killip class of the studied patient gender	
Table (11): 1	Body weight of the studied patient gender	_
Table (12):	Anterior MI or LBBB in the straccording to gender	•

Table (13):	Presence of Typical symptoms in the studied patients according to gender
Table (14):	Time of presentation of the studied patients according to gender
Table (15):	Age of the studied patients according to gender 104
Table (16):	Heart rate of the studied patients according to gender
Table (17):	Time door to balloon the studied patients according to gender
Table (18):	Serum Troponin in the studied patients according to gender
Table (19):	CK in the studied patients according to gender 108
Table (20):	CKMB in the studied patients according to gender
Table (21):	LVEF% in the studied patients according to gender
Table (22):	Duration of hospital stay in the studied patients according to gender
Table (23):	In hospital mortality by patient gender 112
Table (24):	Total 30 Days mortality including in hospital mortality by patient gender
Table (25):	TIMI Flow grade by patient gender 114
Table (26):	Myocardial blush grade by patient gender 115

List of Figures

Figure No	o. Eitle	Page No.
Figure (1):	Acute Coronary Syndromes	6
Figure (2):	Diagram of the dynamic state of the thrombotic response with different interplaque, mural nonocclusive, and of thrombus	stages- cclusive
Figure (3):	A series of possible stages in the development the various lesions of atherosclerosis	
Figure (4):	Schematic representation of the progre myocardial necrosis after coronary occlusion	artery
Figure (5):	Algorithm for selecting a management in patients with STEMI	
Figure (6):	DM status of the studied patients acco	•
Figure (7):	HTN status of the studied patients acco	
Figure (8):	Smoking status of the studied according to gender	_
Figure (9):	Killip class of the studied patients acco	
Figure (10):	Body weight of the studied patients act to gender	
Figure (11):	Anterior MI or LBBB in the studied according to gender	-
Figure (12):	Presence of Typical symptoms in the patients according to gender	

Figure (13):	Time of presentation of the studied patients according to gender	3
Figure (14):	Age of the studied patients according to gender 10	4
Figure (15):	Heart rate of the studied patients according to gender	5
Figure (16):	Time door to balloon the studied patients according to gender	6
Figure (17):	Serum Troponin in the studied patients according to gender	7
Figure (18):	CK in the studied patients according to gender 10	8
Figure (19):	CKMB in the studied patients according to gender	9
Figure (20):	LVEF% in the studied patients according to gender	0
Figure (21):	Duration of hospital stay in the studied patients according to gender	1
Figure (22):	In hospital mortality by patient gender 11	2
Figure (23):	Total 30 Days mortality including in hospital mortality by patient gender	3
Figure (24):	TIMI flow grade by patient gender11	4
Figure (25):	Myocardial blush grade by patient gender 11	5

Introduction

ST segment elevation myocardial infarction continues to be a significant public health problem in industrialized countries and is becoming an increasingly significant problem in developing countries (*Antman et al.*, 2004).

Many studies of sex-related differences in the shortand long-term outcomes of acute myocardial infraction (AMI) have concluded that mortality is higher among women than men (*Sakurai et al.*, 2003).

The reason for poorer outcomes in women remains unclear. The higher mortality among women may be partially explained by the fact that women were older than men and had higher rates of unfavorable prognostic factors, however several studies continued to show a survival disadvantage for women (*Kudenchuk et al., 1996*). The persistence of higher mortality after risk adjustment may be because women usually receive less aggressive treatment for AMI than men (*Chandra et al., 1998*).

Another potential explanation for the higher mortality among women is delayed presentation to the hospital (*Meischke et al.*, 1998).

In general, women with AMI present to hospital later than men, suggesting different behavioral responses. Women have been reported to be less likely than men to believe that they are having a heart attack when they experience symptoms of AMI (*Meischke et al.*, 1995).

Several studies have reported that women have different or less typical symptoms of AMI than men (*Meischke et al.*, 1998). Women are more likely to have non typical chest pain, nausea or vomiting (or both), and shortness of breath (*Patel et al.*, 2004). These atypical symptoms may make it difficult for not only women with AMI, but also bystanders and health-care providers to correctly interpret the situation and take action (*Masami et al.*, 2006).

However, analyses adjusting for baseline differences between women and men have yielded conflicting results. Several studies have found that sex is an independent risk factor for increased mortality after AMI (*Babak et al.*, 2001), whereas others have not (*Kosuge et al.*, 2005).