The Effect of Ozone on Surface Morphology and Tubule Occlusion of Hypersensitive Dentin

Thesis
Submitted to the
Faculty of Oral and Dental Medicine Cairo University

In partial fulfillment of the requirements of Master Degree in Operative Dentistry

BY

Rasha Raafat Hassan Abdel Aziz B.D.S. (Cairo University -2002)

Faculty of Oral and Dental Medicine Cairo University 2009

Supervisors

Dr. Mai Mahmoud Yousry

Associate Professor of Operative Dentistry Faculty of Oral and Dental Medicine Cairo University

Dr. Rania Sayed Mosallam

Lecturer of Operative Dentistry
Faculty of Oral and Dental Medicine
Cairo University

research under the supervision of **Dr. Mai Mahmoud Yousry**,
Associate Professor of Operative Dentistry, Faculty of Oral and
Dental Medicine, Cairo University. I would like to express my
grateful thanks and appreciation for her kind supervision and
meticulous criticism.

I would like also to express my sincere thanks to Dr. Rania

Sayed Mosallam, Lecturer of Operative Dentistry, Faculty of Oral

and Dental Medicine, Cairo University, for her endless help,

support, encouragement and valuable guidance throughout this

study.

	Page
List of Tables	i
List of Figures	ii
Introduction	1
Review of Literature	3
Aim of the Study	28
Materials and Methods	29
Results	43
Discussion	65
Summary and Conclusions	78
References	80
Appendix	I
Arabic summary	

		Page
Figure 1	OzonyTronX; A: regulator, B: connector, C: probe activation applicator, D: plasma probe	31
Figure 2	Kit of plasma probes; A: GI-probe	31
Figure 3	Fluoride desensitizer; ALLSolutions	32
Figure 4	Oxalate desensitizer; D/sense-Crystal	32
Figure 5	Bronwill cutting machine	39
Figure 6	Mesiodistal sectioning of the tooth	39
Figure 7	Checking the width of dentin slab (4 mm) using precise caliber	40
Figure 8	Checking the thickness of dentin slab (1 mm) using precise caliber	40
Figure 9	GI-probe applied onto dentin slab	41
Figure 10	Application of fluoride desensitizing agent	41
Figure 11	Application of oxalate desensitizing agent	42
Figure 12	Environmental scanning electron microscope	42
Figure 13	ESEM photomicrograph representing control dentin specimen after treatment with citric acid (3000x)	46
Figure 14	ESEM photomicrograph representing control dentin specimen after immersion in distilled water (3000x)	46
Figure 15	ESEM photomicrograph representing dentin specimen before application of ozone (3000x)	47
Figure 16	ESEM photomicrograph representing dentin specimen after ozone application (3000x)	47

Figure 17	ESEM photomicrograph representing dentin specimen before fluoride application (3000x)	48
Figure 18	ESEM photomicrograph representing dentin specimen after fluoride application (3000x)	48
Figure 19	ESEM photomicrograph representing dentin specimen before potassium oxalate application (3000x)	49
Figure 20	ESEM photomicrograph representing dentin specimen after potassium oxalate application (3000x)	49
Figure 21	ESEM photomicrograph representing ozone treated dentin specimen before fluoride application (3000x)	50
Figure 22	ESEM photomicrograph representing ozone treated dentin specimen after fluoride application (3000x)	50
Figure 23	ESEM photomicrograph representing ozone treated dentin specimen before potassium oxalate application (3000x)	51
Figure 24	ESEM photomicrograph representing ozone treated dentin specimen after potassium oxalate application (3000x)	51
Figure 25	SEM photomicrograph representing surface topography of a fluoride treated dentin specimen (2500x)	52
Figure 26	SEM photomicrograph representing a longitudinal fractured fluoride treated dentin specimen (2500x)	52
Figure 27	SEM photomicrograph representing surface topography of oxalate treated dentin specimen (2500x).	53

Figure 28	SEM photomicrograph representing a longitudinal fractured oxalate treated dentin specimen (2500x)	53
Figure 29	Representative ESEM photomicrograph for qualitative image analysis evaluation of dentinal tubule	54
Figure 30	Bar chart for the mean percentage change in dentinal tubule count with and without ozone application for the desensitizing agents	56
Figure 31	Bar chart for mean percentage of tubule occlusion with and without ozone application for the desensitizing agents	57
Figure 32	Bar chart for the mean percentage change in tubule count for the desensitizing agents with and without ozone application	60
Figure 33	Bar chart for mean percentage of tubule occlusion for desensitizing agents with and without ozone application	61
Figure 34	Bar chart for the mean percentage change in tubule count of the different subgroups	63
Figure 35	Bar chart for mean percentage of tubule occlusion of the different subgroups	64

		Page
Table (1)	Specifications of desensitizing agents	30
Table (2)	Variables of the study	35
Table (3)	Interaction of the variables of the study	35
Table (4)	Mean percentage change in dentinal tubule count, standard deviation (SD) values and statistical analysis for the effect of ozone application with desensitizing agents	56
Table (5)	Mean percentages of tubule occlusion, standard deviation (SD) values and statistical analysis for the effect of ozone application with desensitizing agents	57
Table (6)	Mean percentage change in dentinal tubule count, standard deviation (SD) values and statistical analysis for desensitizing agents with and without ozone application	60
Table (7)	Mean percentages of tubule occlusion, standard deviation (SD) values and statistical analysis for the desensitizing agents with and without ozone application	61
Table (8)	Mean percentage change in dentinal tubule count, standard deviation (SD) values and statistical analysis for comparison between different interactions of subgroups	63
Table (9)	Mean percentages of tubule occlusion, standard deviation (SD) values and statistical analysis for interactions between subgroups	64

This study was conducted to evaluate the effect of ozone and its combination with fluoride or oxalate desensitizing agents on tubular occlusion of hypersensitive dentin. Results for qualitative Environmental Scanning Electron Microscope (ESEM) examination are presented in figures 13 to 24 and 25 to 28 for Scanning Electron Microscope (SEM) examination while that for quantitative image analysis are presented in tables 4 to 9 and figures 29 to 35.

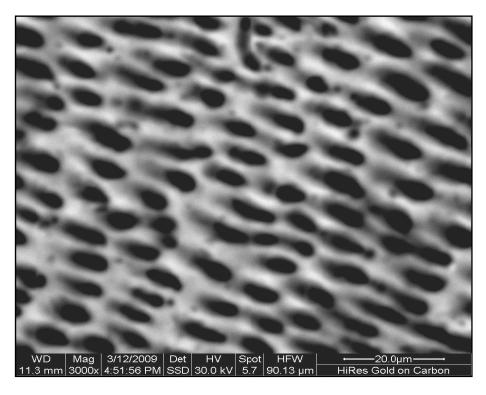
I. Qualitative assessment of dentinal tubules

I. A **Environmental scanning electron microscope:**

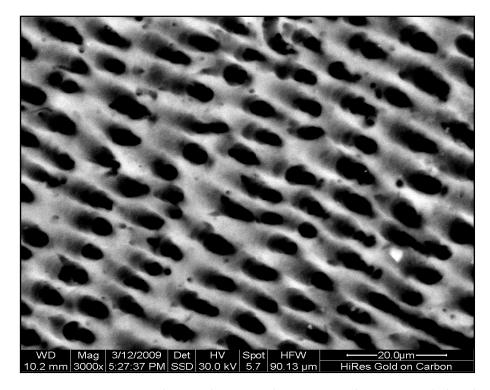
Qualitative assessment, using ESEM, for a representative specimen for each subgroup before and after treatment is presented. In the control group, a typical ESEM photomicrograph after citric acid treatment is shown in (figure 13). The specimen reveals a smooth appearance with opened tubules' orifices, simulating hypersensitive dentin. Dentin specimens were immersed in distilled water as control and representative ESEM photomicrographs is shown in (figure 14). The control specimens maintained their condition and no significant changes were observed between that before and after immersion in distilled water. On the other hand, ESEM examination of specimens treated with ozone (figure 16) showed slight widening in the lumen of dentinal tubules as compared to the ESEM photomicrograph taken before ozone application (figures 15).

Figures (17 and 18) show representative ESEM photomicrographs for a dentin specimen before and after treatment with fluoride. Some crystals are seen loosely attached to the tubules. However, no precipitates seem to occlude the dentinal tubules which

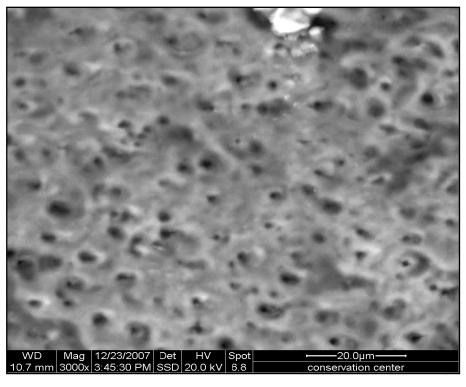
appear opened and exposed but slightly narrower than before treatment. In contrast, the application of potassium oxalate on dentin surface (figure 20) reveals obliteration of dentinal tubules compared to the widely patent dentinal tubules before treatment (figure 19). With oxalate application, a homogenous layer is shown on the surface of dentin occluding the majority of dentinal tubules orifices. Spherical and crystal-like inclusions are also observed on the surface (figure 20).


Figures (21 and 22) show representative photomicrographs of dentin surface before and after treatment with ozone followed by fluoride application. Figure (22) reveals partial occlusion of dentinal tubules with narrowing in the apertures of the dentinal tubules, but not complete obliteration. On the other hand, the dentin surfaces treated with ozone followed by application of potassium oxalate is presented in (figure 24) compared to before treatment (figure 23). It could be observed that precipitates of oxalate crystals covered the treated dentin surface and occluded the orifices. However, some dentinal tubules opening remained visible with slight narrowing of tubules apertures than before treatment.

I. B Scanning electron microscopic examination:


SEM assessment of representative specimens treated with fluoride or oxalate is presented in figures (25 to 28). In fluoride treated specimen; examination of the surface topography revealed a relatively smooth thin surface coating over some areas of the treated surface (figure 25). Most of the dentinal tubules showed narrowing in the tubule aperture due to fine precipitates on the tubular walls. However, full tubular occlusion was very rare.

Fractured fluoride-treated specimen (figure 26), showed that this surface coating had fine deposits adhered to the surface (solid white arrow). It is also shown that this fine coating did infiltrate the dentinal tubules at various depths and appear to be in intimate contact with the dentinal tubules. Some tubules were infiltrated by the precipitate for approximately 10 µm (solid black arrow) but not to the full length of the dentinal tubule (dotted white arrow). Other tubules appear to be narrowed to its full visible length by the infiltrate which appear to line the lumen of the tubule (dotted black arrow).


On the other hand, SEM examination of the surface topography of the oxalate-treated specimen (figure 27) reveals crystalline rectangular, rod-shaped aggregates with different dimensions. Angular and cluster-like crystals are deposited on the dentin surface hiding most orifices of the dentinal tubules. Some tubules are barely visible. Fractured longitudinal section (figure 28) reveals that these deposits formed a dense mass on the surface of dentin (solid white arrow), occluding the tubule entrance and firmly attached to the dentinal tubules and intertubular dentin to an approximate depth of 7 µm (solid black arrow). Below this depth, some oxalate crystals or aggregates (dotted black arrow) was found plugging the tubules but did not penetrate, however, more than approximately 14 µm inside the tubules. The crystals appear to be larger than the diameter of the deeper portion of the tubule which was probably not affected by the superficial demineralization by citric acid.

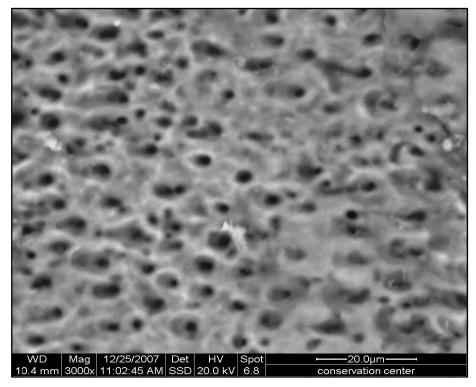
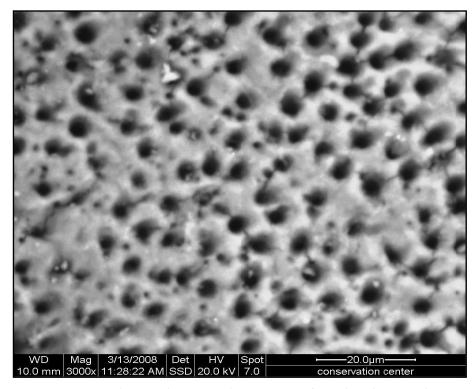
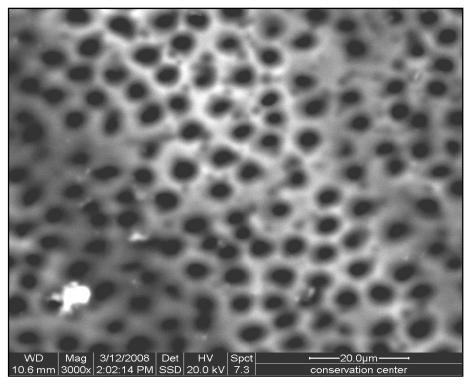

Figure (13): ESEM photomicrograph representing control dentin specimen after treatment with citric acid (3000x)

Figure (14): ESEM photomicrograph representing control dentin specimen after immersion in distilled water (3000x)


Figure (15): ESEM photomicrograph representing dentin specimen before application of ozone (3000x)


Figure (16): ESEM photomicrograph representing dentin specimen after ozone application (3000x)

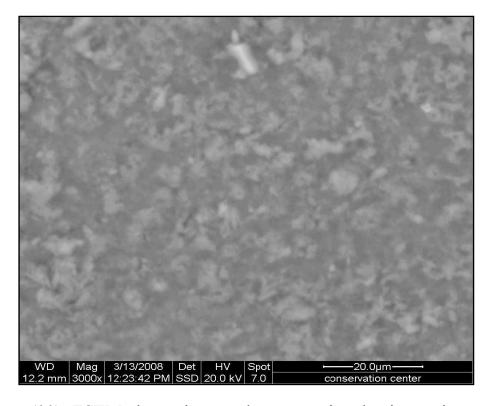

Figure (17): ESEM photomicrograph representing dentin specimen before fluoride application (3000x)

Figure (18): ESEM photomicrograph representing dentin specimen after fluoride application (3000x)

Figure (19): ESEM photomicrograph representing dentin specimen before potassium oxalate application (3000x)

Figure (20): ESEM photomicrograph representing dentin specimen after potassium oxalate application (3000x)