Oro-dental anomalies and Gingival Biopsy as a Possible Diagnostic Tool in some Autosomal Recessive Neurodegenerative disorders.

A Thesis submitted in partial fullfillement for Master degree in

Oral Biology

By Inas Sayed Mostafa Sayed

B.D.S.(Cairo University)
National Research Centre
Cairo

Faculty of Oral and Dental Medicine
Cairo University

Y . . Y

بسم الله الرحمن الرحيم

الإلاما المجاذات لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم سورة البقرة الايه- ٣٢

Supervisors

Prof. Dr. Nahed Abdel Salam Mohamed Khalil

Prof. of Oral Biology

Faculty of Oral and Dental Medicine

Cairo University

Prof. Dr. Eman Hassan Anwar Aboul-Ezz

Head of Craniofacial Genetics Department

National Research Centre

ACKNOWLEDGEMENT

First and foremost, I always indebted to "Allah" the kindest and the most merciful.

I would like to express my sincere gratitude to **Prof. Dr.**Nahed Abdel Salam Mohamed Khalil, Prof. of Oral Biology,
Faculty of Oral and Dental Medicine, Cairo University for her
continuous guidance and supervision in criticizing and correcting
the whole thesis. To her I extend my sincere thanks.

I wish to express my recognition to **Prof. Dr. Eman Hassan Anwar Aboul-Ezz,** Head of Craniofacial Genetics
Department, National Research Centre for her masterly advice,
her kind unforgettable instructions and her generous cooperation.

I truely appreciatiate **Dr. Ghada Mohamed El Husseiny Abdel Salam,** Assossiate professor of Clinical Genetics, National

Research Centre for her continuous help and active support during the various stages of this work.

My sincere thanks and deep appreciation to **Dr. Tarek Hamed El Badry**, Assossiate professor of Craniofacial Genetics,
National Research Centre for his sincere help, advice and support.

Finally, I am thankful to all members of Craniofacial Genetics department, National Research Centre for their help and cooperation

To my Family,

With all love and gratitude

List of contents

♦	Introduction and Review of Literature	
	• Structure of the Gingiva	١
	 Comparison between Structure and Embryology of the Gingiva and Conjunctiva Neurodgenerative disorders 	٧ ٨
	I-Neuroaxonal dystrophy (NAD)	٨
	 Infantile Neuroaxonal dystrophy (INAD) 	٩

Neuroaxonal dystrophy Variants	١٧	
II-Pantothenate kinase-associated neurodegeneration or Hallervorden-Spatz syndrome (HSS)		
III-Giant axonal Neuropathy	۲.	
IV-Neuronal ceroid lipofuscinosis (NCL)	۲ ٤	
■ Infantile NCL (Harberg- Santavuori- Haltia); CLN \	70	
■ Late infantile NCL (Bielschowsky); CLN ^۲	77	
■ Juvenile NCL (Batten); CLN ^r	77	
■ Adult NCL (Kufs); CLN [£]	77	
 Late infantile (Finish variant); CLN° 	77	
■ Late infantile (Indian variant); CLN [¬]	77	
 CLN[∨] and CLN[∧] 	۲۸	
V-Wilson's disese (WD)	٣١	
Aim of the Study	٣٤	
Patients and Methods	٣٥	
Results		
Discussion	٨١	
Summary	9 £	
Conclusion and Recommendation	97	
Refrences		
Arabic Summary		

List of Tables

Table :	Molecular genetic classification of NCL syndromes	٣.
Table ⁷ a:	clinical findings in patients with Infantile Neuroaxonal Dystrophy (INAD)	٤٧
Table [†] b:	clinical findings in patients with Adult-onset Neuroaxonal dystrophy and Hallervorden-spatz	٤٨
Table ":	syndrome clinical findings in patients with neuronal ceroid lipofuscinosis (NCL)	٤٩

Table 4:	clinical findings in patients with Wilson disease	0.
Table • a:	Oro-dental findings in patients with Infantile Neuroaxonal Dystrophy (INAD)	01
Table ° b:	Oro-dental findings in patients with Adult-onset Neuroaxonal Dystrophy and Hallervorden-Spatz disease	
Table 7:	Oro-dental findings in patients with NCL	٥٢
Table ^V :	Oro-dental findings in patients with Wilson disease	0 8
	List of Figures	
Figure 1:	List of Figures Facial picture of case with INAD	00
Figure 7:	Brain MRI studies of case with INAD	٥٦
Figure ^۳ :	Midsagittal view of brain for case with late NAD	٥٧
Figure 4:	Coronal Brain MRI of patient with HSS	٥٧

Extra oral picture of a patient with INAD

٥٨

Figure o:

Figure 7:	Intraoral picture of a patient with adult NAD	01
Figure ^V :	Panoramic X ray of patient case 10	09
Figure ^{\(\lambda\)} :	Ultrastructural micrograph of a gingival biopsy of a patient with INAD	٦٠
Figure 9:	Ultrastructural micrograph of a gingival biopsy of a patient with INAD	٦١
Figure ::	Ultrastructural micrograph of a gingival biopsy of a patient with INAD	٦٢
Figure 11:	Ultrastructural micrograph of a gingival biopsy of a patient with INAD	٦٣
Figure 17:	Ultrastructural micrograph of a gingival biopsy of a patient with INAD	٦٤
Figure ۱۳:	Ultrastructural micrograph of a gingival biopsy of a patient with adult-NAD	70
Figure 15:	Ultrastructural micrograph of a gingival biopsy of a patient with adult-NAD	٦٦
Figure 10:	Ultrastructural micrograph of a gingival biopsy of a patient with With HSS	٦٧
Figure 17:	Brain MRI studies of patient with NCL	٦٨
Figure ۱۷:	Extraoral picture of a patient with NCL	٦٩
Figure ۱۸:	Extraoral picture of a patient with NCL	٦٩
Figure ۱۹:	Ultrastructural micrograph of a gingival biopsy of a patient with NCL	٧.

Figure Y:	Ultrastructural micrograph of a gingival biopsy of a patient with NCL	٧١
Figure ۲1:	Ultrastructural micrograph of a gingival biopsy of a patient with NCL	٧٢
Figure ۲۲:	Ultrastructural micrograph of a gingival biopsy of a patient with NCL	٧٣
Figure ۲۳:	Extraoral picture of a patient with Wilson's disease	٧٤
Figure 75:	Ultrastructural micrograph of a gingival biopsy of a patient Wilson disease	٧٥
Figure Yo:	Pedigree of patients with INAD	٧٦
Figure ۲٦:	Pedigree of patients with adult-onset NAD and HSS	٧٧
Figure ۲۷:	Pedigree of patients with NCL	٧٨, ٧٩
Figure ۲۸:	pedigree of patients with Wilson disease	٨٠

List of abbreviations

BAEP	Brain auditory evoked potentials
CLN	Ceroid Lipofuscinosis, Neuronal
CT	Computerized tomography
DNA	Deoxyribonucleic acid
EEG	Electroencephalography
EM	Electron microscope
EMG	Electromyography
ER	The endoplasmic reticulum
ERG	Electroretinogram
GAN	Giant axonal neuropathy

GFAP Glial fibrillary acidic protein GRODs Granular osmiophilic deposits HSS Hallervorden-Spatz syndrome

IF Intermediate filaments

INAD Infantile Neuroaxonal dystrophy

INCL Infantile Neuronal ceroid lipofuscinosisJNCL Juvenile Neuronal ceroid lipofuscinosisLINCL Late infantile Neuronal ceroid lipofuscinosis

Linch Late infailthe Neuronal ceroid liporus

MBP Myelin basic protein

MLD Metachromatic leukodystrophy
MRI Magnetic resonance imaging
MRI Magnetic reasonance image
NCL Neuronal ceroid lipofuscinosis
NCV Nerve conduction velocity

NE Northern epilepsy

PANK[†] Pantothenate kinase [†] enzyme

PKAN Pantothenate kinase-associated neurodegeneration

PLP Proteolipid protein

RER Rough endoplasmic reticulum

RNA Ribonucleic acid

TEM Transmission electron microscope

VEP Visual evoked potentials

WD Wilson's disese

Introduction and Review of literature

Formatted: Font: 20 pt, Complex Script Font: 20 pt

Formatted: Centered, Line spacing: 1.5 lines

Formatted: Line spacing: 1.5 lines

Structure of the Gingiva

Gingiva is the part of the oral mucosa that surrounds the crevices of the teeth; it is firmly attached to the alveolar process and the cervical parts of the teeth. (Melfi and Alley, Y...). (Melfi and Alley Y...). The two main tissue components of the The oral mucosa are consists of a surface layer of a stratified squamous epithelium, called the oral epithelium, and an underlying connective tissue layer, called the lamina propria. (Squier and Finkelstein, Y...).

Formatted: After: -0.11", Tab stops: 5.25", Right + 5.75", Right + 5.88", Right

_(Squier and Finkelstein Y . . Y).

Formatted: Indent: First line: 0", After: -0.11", Tab stops: 5.25", Right + 5.75", Right + 5.88", Right

The (Berkovitz et al * · · *).

Cellscells of the basal layer are proved to be the least differentiated oral epithelial cells. They contain not only the well known organelles (nuclei, mitochondria, ribosomes, endoplasmic reticulum, and Golgi complexes) commonly present in the cells of other tissues but also, certain characteristic structures that identify them as epithelial cells and distinguish them from other cell types. These structures are the filamentous strands called tonofilaments and the intercellular bridges or desmosomes.

(Squier and Finkelstein, ۲۰۰۳). (Squier and Finkelstein ۲۰۰۳).

The nucleus is the largest, densest, and most conspicuous organelle in the cell. When stained with basic histological dyes, the chief nucleoprotein in the nucleoplasm, chromatin shows up well in groups of varying size when the cell is viewed microscopically. In an actively dividing cell, the chromatin concentrates into microscopically visible, discrete, rod-like chromosomes. The nucleusIt stores the genetic code. and From from its sequence of nucleotides in the chromatin, deoxyribonucleic acid, (DNA) or DNA and ribonucleic acid, or (-RNA) give directions for everything the cell is and will be. The fluid portion within the nucleus is the nucleoplasm which contains important proteins. The nucleus is completely surrounded by the nuclear envelope, a membrane similar to the cell membrane, except that it is double layered. The nuclear envelope may have nuclear pores, which act as avenues of communication between the inner nucleoplasm and the outer cytoplasm. The nucleolus is a prominent, rounded nuclear organelle, which is usually centrally placed in the nucleoplasm when the cell is viewed microscopically. (Bath-Balogh et al., 1997).

The cell organells have been described to include (Bath-Balogh et al. 1997).

The endoplasmic reticulum (ER), which is parallel membrane-bound cavities in the cytoplasm that contain newly acquired and synthesized protein. Two types of ER, smooth surfaced and granular or rough surfaced, can be found in the same cell. Rough-surfaced ER is caused by ribosomes on the surface of the reticulum and is the site at which protein production is initiated. These Ribosomes ribosomes are particles that translate genetic codes for proteins and activate mechanisms for their

Field Code Changed

Introduction and review of literature

production. They can be found as separate particles in the cytoplasm, clustered, or attached to the ER membranes –(Avery and Steele, **...).

(Avery and Steele *---)

<u>In addition, The-the-ER</u> transports substances in the cytoplasm. The-<u>ER and it</u> is connected to Golgi's apparatus via small vesicles. Golgi's apparatus or complex helps sort, condense, package, and deliver proteins arriving from the ER. <u>Golgi's-Such</u> apparatus is composed of cisternae (flat plates) or saccules, small vesicles, and large vacuoles. <u>From here the The</u> secretory vesicles move or flow to the cell surface, where they fuse with the cell membrane and the plasmalemma and release their contents by exocytosis. (<u>Avery and Steele, Y···</u>).

(Avery and Steele *---)

Moreover Lysosomes are small, membrane-bound bodies that contain a variety of acid hydrolase and digestive enzymes to help break down substances both inside and outside the cell- (Avery and Steele, Y...).

(Avery and Steele * · · ·)

<u>Furthermore</u>, <u>Mitochondria</u> mitochondria are membrane-bound organelles that lie free in the cytoplasm. They are important in generating energy. These organelles appear as spheres, rods, ovoids, or thread-like bodies. Usually the inner layer of their trilaminar bounding membrane inflects to form transverse-appearing plates, the cristae-(Avery and Steele, *...).

(Avery and Steele *---)

Surrounding the cell is the plasma membrane or plasmalemma, which envelops the cell and provides a selective barrier that regulates transport of substances into and out of the cell- (Avery and Steele, Y...).

Formatted: Indent: First line: 0.38"

Formatted: Indent: Before: 0.13"

Formatted: Font: Italic, Complex Script Font: Italic Formatted: Font: Italic, Complex Script Font: Italic

Formatted: Indent: First line: 0"

Formatted: Font: Not Bold, Complex Script Font: Bold