Significance of the Ratio between Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-Binding Protein-3 as a Predictive Marker of Insulin Resistance in Chronic Hepatitis C Patients

Thesis

Submitted For Partial Fulfillment of Master Degree In Internal Medicine

Ву

Sary Ibrahim Abdelsalam Shinhab

 $\mathcal{M}.\mathcal{B}.\mathcal{B}.\mathcal{C}h$

Faculty of Medicine – Alexandria University

Under Supervision of

Prof. Dr. Essam Farid El Mahdy

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Wesam Ahmed Ibrahim

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Ahmed Elsaady Khayal

Assistant Professor of Internal Medicine Faculty of Medicine - Ain Shams University

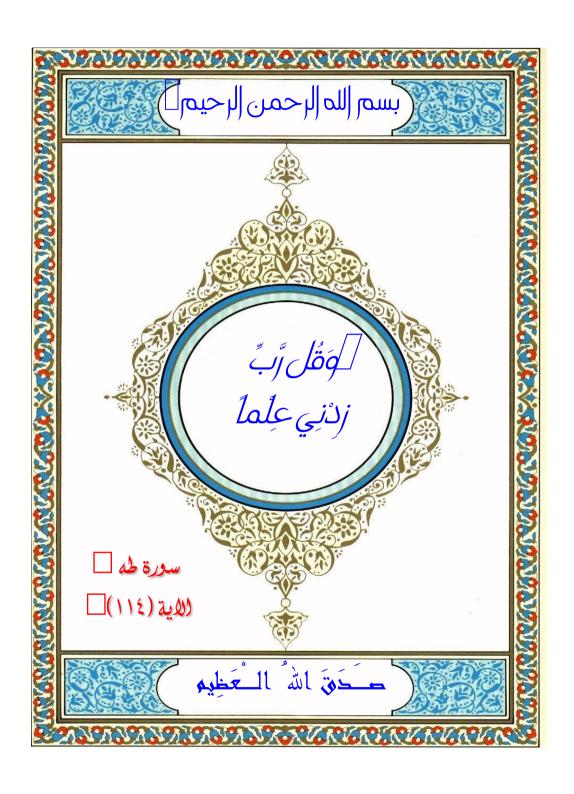
Faculty of Medicine

Ain Shams University

2017

Abstract:

Back ground: Hepatitis C virus (HCV) infection is a worldwide disease that induces a range of chronic liver disease sequelae and metabolic abnormalities including insulin resistance and hepatic steatosis. Recent studies showed a lower level of serum insulin-like growth factor-1 (IGF-1) or a decrease in the IGF-1/IGF-binding protein-3 (IGFBP-3) ratio in patients in patients with diabetes mellitus as well as in patients with hepatic steatosis. As both hepatic steatosis and insulin resistance were two common phenomena in patients with chronic HCV.


Objective: to assess the significance of the ratio between insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) in non-diabetic patients with hepatitis C virus and insulin resistance.

Patients and methods: in this case-control study, 30 non-diabetic patients were selected with HCV-related chronic liver disease and insulin resistance which is determined by the homeostasis model for assessment of insulin resistance (HOMA-IR) method (HOMA-IR \geq 2.5) and 30 healthy volunteers matched in age and sex were selected as a control group. IGF-1 and IGFBP-3 were assessed in the cases and controls using the commercially-available ELISA kits. Insulin resistance was determined using HOMA-IR calculation.

Results: Chronic hepatitis C was more associated with insulin resistance and low IGF-1/IGFBP-3 ratio levels. Child-Pugh score (which is known to be used for assessment of the degree of liver decompensation) in our thesis was statistically correlated to HOMA-IR and IGF-1/IGFBP-3 ratio, illustrating the fact that the more insulin resistance, the more hepatic dysfunction.

Conclusion: Decrease in IGF-1/IGFBP-3 ratio level is a good predictive marker of insulin resistance and deterioration of liver functions in HCV-related chronic liver disease.

Keywords: IGF-1/ IGFBP-3 ratio, chronic hepatitis C, insulin resistance, HOMA-IR.

Acknowledgement

First and foremost I thank "ALLAH" to whom I relate any success in achieving any work in my life.

I would like to express my deep appreciation and gratefulness to **Prof. Dr. Essam Farid El**Mahdy Professor of Internal Medicine, Faculty of Medicine Ain Shams University for his precious help, moral support, fruitful advice and kind attitude. I really have the honor to complete this work under his supervision.

I'm immensely indebted and deeply grateful to **Prof. Dr. Wesam Ahmed Ibrahim** professor of Internal Medicine, Faculty of Medicine Ain Shams University, for her kind support, who honestly supervised and precisely revised the whole work that without her contribution, this work would not exist this way.

Many thanks to Assist. Prof. Dr. Ahmed Elsaady Khayal Assistant professor of Internal Medicine, Faculty of Medicine Ain Shams University, for his great encouragement, excellent guidance, powerful support, valuable advices and generous help throughout this work.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the work	4
Review of literature	
Chapter (1) Hepatitis C virus (HCV)	5
Chapter (2) Insulin resistance in chronic hepatitis c	patients19
Chapter (3) IGF-1/IGFBP-3 ratio as a Predictive Ma	arker of IR in CHC. 56
Subjects & Methods	65
Results	73
Discussion	96
Summary & Conclusion	108
Recommendations	112
References	113
Master Table	132
Arabic summary	

List of Tables

Table No.	Title	Page No
Table (1):	Interpretation of results of tests for (HCV) infection	15
Table (2):	Obesity-related cancers	40
Table (3):	Serum IGF-1 and IGFBP-3 distribution values by sex and age-group	64
Table (4):	Comparison between the two studied groups according to sex	74
Table (5):	Comparison between the two studied groups according to age	74
Table (6):	Comparison between the two studied groups according to Body Mass Index (BMI)	74
Table (7):	Ascites and encephalopathy percentage in the case group	75
Table (8):	Comparison between the two studied groups according to complete blood count (CBC)	76
Table (9):	Comparison between the two studied groups according to kidney function tests	77
Table (10):	Comparison between the two studied groups according to Coagulation profile	77
Table (11):	Comparison between the two studied groups according to liver function tests	78
Table (12):	Comparison between the two studied groups according to fasting blood glucose and fasting insulin	79
Table (13):	Distribution of the studied cases according to HCV RNA viral load in Cases	79
Table (14):	Comparison between the two studied groups according to HOMA-IR	80
Table (15):	Comparison between the two studied groups according to IGF-1, IGFBP-3 and IGF-1/IGFBP-3 ratio	82
Table (16):	Correlations between HOMA-IR with different parameters	84
Table (17):	Correlations between IGF-1 with ALT and HCV PCR	86

Table No.	Title	Page No
Table (18):	Distribution of the studied cases according to child classification in Cases	87
Table (19): Table (20):	Relation between Child classifications with different parameters Correlation between IGF-1 /IGFBP-3 ratio and Child score	89 91
Table (21):	Correlation between BMI and different parameters	92
Table (22):	Agreement (sensitivity & specificity) for IGF-1 /IGFBP-3 ratio	93
Table (23):	Multivariate analysis logistic regression for variables associated with insulin resistance (represented in HOMA-IR in this study	95)

List of Figures

Fig. No.	Title	Page
Figure (1):	Complications of cirrhosis	11
Figure (2):	Scoring systems used to assess hepatic insufficie	
	in cirrhotic patients	-
Figure (3):	Regulation of insulin and Insulin Growth	
	Factor signaling	23
Figure (4):	Regulation of metabolism by insulin	
Figure (5):	Link between insulin resistance and metabolic dyslip	
Figure (6):	The etiological, hormonal and clinical features of	
Figure (7):	Molecular Effects of HCV-NS Proteins on Endopla	
	Reticulum	52
Figure (8):	Mechanism of insulin resistance caused by Zinc def	ficiency in
	patients with the HCV-related chronic liver disease	
Figure (9):	Schematic diagram of insulin, GH and IGF-1 regula	ation 59
Figure (10):	Comparison between the two studied groups	
	according to Fasting Insulin	80
Figure (11):	Comparison between the two studied groups	
	according to HOMA-IR	81
Figure (12):	$Comparison\ between\ the\ two\ studied\ groups\ according\ to$	IGF - 1 83
Figure (13):	Comparison between the two studied groups	
	according to IGF-1/IGFBP-3 ratio	
	Correlations between HOMA-IR with IGF-1	
Figure (15):	Correlations between HOMA-IR with IGF-1/IGFBP-3	86
Figure (16):	Relation between Child classifications with HOM	A-IR 87
Figure (17):	Distribution of the studied cases according to Child	
	classification	88
Figure (18):	Relation between Child classification & IGF-	
	1/IGFBP3	
	Correlation between IGF-1/IGFBP-3 and Child sc	
	Correlations between BMI & HOMA-IR in control	-
Figure (21):	ROC curve for IGF-1/IGFBP-3 ratio as a predictive	
	insulin resistance (measured by HOMA-IR)	
	patients	94

List of Abbreviations

Abb. Full term

ALT : Alanine aminotransferase

ANOVA : Analysis of variance

AST : Aspartate transaminase

AGE : Atazanavir (ATV)

BUN : Blood Urea Nitrogen

BMI : Body Mass Index

CDC : Centers for Disease Control and Prevention

CTP score : Child-Turcotte-Pugh Score

CHC : Chronic Hepatitis C

CLD : Chronic Liver Disease

CBC : Complete blood count

DMNI : Damanhur Medical National Institute

DM : Diabetes mellitus

ELISA : Enzyme-linked immunosorbent assay

EHM : Extra-hepatic manifestation

Full term Abb.

: Fasting blood glucose **FBG**

FFAs Free Fatty Acids

GH-IGF-I : Growth hormone Insulin-like growth factor-1 axis

GLUT Glucose Transporter

GH : Growth hormone

: Hemoglobin HB

Hepatitis B surface antigen **HBsAg**

HBV Hepatitis B virus

: Hepatitis C virus Non-Structural Proteins **HCV-NS**

Proteins

HCV Hepatitis C virus

HCC Hepatocellular carcinoma

High-density lipoprotein **HDL**

Homeostasis Model for Assessment of Insulin Resistance **HOMA-IR**

Hepatorenal syndrome HRS

Human immunodeficiency virus HIV

Insulin-like growth factor-1 to Insulin like growth factor IGf-

binding protein-3 ratio 1/IGFBP-3

ratio

Abb. Full term

INR : International normalized ratio

IGFBP-3 : Insulin like growth factor binding protein-3

IGFBPs : Insulin like growth factor binding proteins

IRS : Insulin receptor substrate

IR : Insulin resistance

IGF-1 : Insulin-like growth factor-1

IL-1 : Interleukin-1

IL-6 : Interleukin-6

IDUs : Intravenous drug users

LSD : Least Significant Difference

LPL : Lipoprotein lipase

LPV : lopinavir

LDL : Low-density lipoprotein

MELD : Model For End-Sage Liver Disease

MVPA : Moderate- and Vigorous-Intensity Physical Activity

N : Number

Abb. Full term

NIDDM : Non-insulin-dependent diabetes mellitus

NS5A : Nonstructural protein 5A

OSA : Obstructive Sleep Apnea

OVs : Oesophageal Varices

OGTT : Oral glucose tolerance test

PTT : Partial Thromboplastin Time

PCR : Polymerase chain reaction

PAI-1 : Plasminogen activator inhibitor type -1

PCOS : Polycystic Ovary Syndrome

PI : Protease inhibitor

PP2-A : Protein Phosphatase 2-A

PT : Prothrombin time

RIA : Radio-Immunoassay

ROS : Reactive Oxygen Species

RTV : Ritonavir

RNA : Ribonucleic Acid

SBP : Spontaneous bacterial peritonitis

SSPG : Steady-state plasma glucose

SSPI : Steady-state plasma insulin

Abb. Full term

SOCS3 : Suppressor of cytokine signaling-3

SVR : Sustained virological response

IST : The insulin suppression test

QUICKI: The Quantitative Insulin Sensitivity Check Index

TGF-β : Transforming growth factor-β

TNF: Tumor necrosis factor

VLDL : Very-Low-Density Lipoprotein

WBCs : White blood cells

WHO : World Health Organization

Introduction

Chronic liver disease is frequently associated with insulin resistance which is known as a pathophysiological feature of hepatogenous diabetes. There are many theories illustrating the pathophysiology of hepatogenous insulin resistance and diabetes including hepatic parenchymal cell damage, porto-systemic shunting and hepatitis C virus (HCV). (*Kawaguchi et al.*, 2011)

Recent studies from various parts of the world stated that chronic HCV infection (CHC) is associated with many metabolic disorders such as non-insulin-dependent diabetes mellitus (NIDDM) and they reported that between 13% and 33% of patients with chronic hepatitis C (CHC) have diabetes mellitus (DM). Insulin resistance (IR) or pre-diabetes is a common feature of disturbed carbohydrate metabolism in chronic liver disease with or without cirrhosis. (*Dai et al.*, 2015)

IGF-1 is a single chain peptide that has a similar molecular structure to pro-insulin. Although IGF-1 is synthesized widely, most of the circulating IGF-1 is derived from the liver. (*Su et al.*, 2010)