FORECASTING THE CHANGES IN THE POPULATION DENSITY OF THE POTATO TUBER MOTH PHTHORIMAEA OPERCULELLA(ZELLER) IN RELATION TO PRE AND POST HARVEST PARAMETERS

BY

GHASSAN ALI YOUSSEF

B.Sc. Agric. Sc. (Plant Protection), Damascus University, Syria, 2001 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Sham University

2009

Approval Sheet

FORECASTING THE CHANGES IN THE POPULATION DENSITY OF THE POTATO TUBER MOTH PHTHORIMAEA OPERCULELLA (ZELLER) IN RELATION TO PRE AND POST HARVEST PARAMETERS

BY

GHASSAN ALI YOUSSEF

B.Sc. Agric. Sc. (Plant Protection), Damascus University, Syria, 2001 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2005

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Sami A. El-Dessouki
Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Al-
Azhar University
Prof. Dr. Faiza M. A. Mariy
Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Ain
Shams University
Prof. Dr. Mohamed S. Abdel- Wahed
Prof. of Economic Entomology, Faculty of Agriculture, Ain Shams
University
Prof. Dr. Gamil B. El-Saadany
Prof. Emeritus of Economic Entomology, Faculty of Agriculture, Ain
Shams University

Date of Examination: 15 / 1 / 2009

FORECASTING THE CHANGES IN THE POPULATION DENSITY OF THE POTATO TUBER MOTH PHTHORIMAEA OPERCULELLA(ZELLER) IN RELATION TO PRE AND POST HARVEST PARAMETERS

BY

GHASSAN ALI YOUSSEF

B.Sc. Agric. Sc. (Plant Protection), Damascus University, Syria, 2001 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2005

Under the supervision of:

Prof. Dr. Gamil B. El-Saadany

Prof. Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Mohamed S. Abdel-Wahed

Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Youssef Ezz-Eldin Y. Abdallah

Associate Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

ABSTRACT

Ghassan Ali Youssef. Forecasting the Changes in the Population Density of the Potato Tuber Moth *Phthorimaea operculella* (Zeller) in Relation to Pre and Post Harvest Parameters. Unpublished Ph.D. Dissertation, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, Egypt, 2009.

This study was carried out on potato tuber moth *Ph. operculella* at the Insects Laboratory and the Experimental Agricultural Station of the Faculty of Agriculture at Shalakan, Qalyubyia Governorate, Ain Shams University, during a period extending between 2005 and 2008, for establishing IPM control tactics for *Phthorimaea operculella* (Zeller).

The laboratory studies demonstrate the following: Nicola potato variety tubers harbored the least reproductive rates a combined with longest generation time and population doubling time (16.33eggs/female, 29.85 days, and 3.66 days), respectively. Potato tubers of Nicola variety had the lowest concentration of free phenols 19.507 ppm. Leaf moisture content had no effect on the insect preference to potato varieties. The optimum zone of temperature of 25, 27±2 and 30°C was the most favorable for potato tuber moth population activity and development.

Field experiments revealed that the highest numbers of captured moths were observed during summer months. The insect underwent nine distinct peaks thus representing nine overlapping generations. Nicola was the least susceptible than Atlas, Spunta and Simone varieties for potato tuber moth infestation. The infestation with potato tuber moth increased as rate of fertilization was decreased. Also as the gap period between final irrigation and harvest time was increased and as the period between harvest and handling tubers was increased.

Lunar phases affect significantly the fluctuations in the population density of potato tuber moth. The following two equations were achieved for predicting the expected changes in the population density expressed as number of moths captured weekly using water sex pan pheromone traps for *Ph. operculella* male moths:

$$\hat{\mathbf{Y}}_{1M} = \mathbf{Exp} (-0.3392 + 1.0015 \times \sqrt{Ta})$$

 $\hat{\mathbf{Y}}_{2M} = \mathbf{Exp} (-0.7182 + 1.0927 \times \sqrt{Ta})$

Action Threshold Level was estimated as 7.14 % infestation, causing reliable decrease in yield average of 7.5 %. Damage Threshold Level (DTL) was estimated as 11.90% and the corresponding decrease in yield was 12.56 %. Economic Injury Level (EIL) was estimated as 15.71% and the decrease in yield was equal to 16.58 %. When the following equation C = V I P D, was considered, it yielded losses equal to 19.05% as the highest infestation economic injury allover the potato growing season. Decrease in yield reached 20.1% or more in the fields not treated with pesticides.

Key words:

Potato tuber moth, Life table, Susceptibility of Potato varieties, Agricultural Practices, Metrological factors, Forecasting, Damage Loss, Population dynamics, Monitoring.

ACKNOWLEDGEMENT

All prayers and praises are due to **Allah** the God of all organisms, who always gave me more than I worth, blessed me with kind professors and gave me the support to produce this thesis.

All my pens, papers, letters, words and phrases can never express my great and sincere gratitude and deepest respect and appreciations to my principle supervisor **Prof. Dr. Gamil B. El-Saadany**, **Professor of Insect Ecology and Economic Entomology**, **Department of Plant Protection**, **Faculty of Agriculture**, **Ain Shams University**, for his supervision, constructive criticism, and the unfailing help during the whole course of this study.

Grateful appreciation to **Prof. Dr. Mohamed S. Abdel-Wahed**, **Professor of Economic Entomology, Department of Plant Protection**, **Faculty of Agriculture, Ain Shams University**, for his supervision, kind attention, continuous encouragement, and valuable suggestions throughout establishing this work.

Sincere appreciation and my deepest gratitude to **Dr. Youssef E. Y. Abdallah, Associate Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University,** for his supervision, great support during the preparation of this work.

I really wander how can I thank and express my deep respect and gratitude to **Prof. Dr. Faiza M. A. Mariy Professor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University,** for her support and encouragement who could be frankly called as the spiritual mother for me and all post graduated Syrian students in the department.

I would like to thank **Prof. Dr. Abdel-Latef Mehanna Former General Director of Department of Research, Egyptian Metrological Authority, Egypt** for his considerable help during this study.

Thanks due to all the staff members and colleagues in the Department of Plant Protection, Faculty of Agriculture, Ain Shams

University, for their encouragement and considerable help that this work possible.

Great love and thanks to my country **Syria**, which gave me the opportunity to complete my post-graduate education, also thanks forwarded to my second country **Egypt** which received me and offered all available facilities and abilities.

I would like to regard and thank deeply the **Egyptian people** for their kindness, generosity and high moral during my presence in Egypt.

My heart feels great love and thanks are especially to my defunct **parents** and to my **brothers and sisters** for their patience and encouragement.

CONTENTS

	Page
List of Tables	i
List of Figures	ix
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
III- MATERIAL AND METHODES	36
IV- RESULTS AND DISCUSSIONS	47
1- The fluctuations in seasonal occurrence and population	
activity of potato tuber moth attacking potato crop, based on sex	
pheromone trap catches at Qalyubyia Governorate	47
2- Number of annual field generations of potato tuber moth as	
determined by sex pheromone trap catches	48
3-Relative susceptibility of certain potato varieties to potato	
tuber moth, Ph. operculella infestations	53
3-1- PTM infestation on foliage of certain potato varieties	53
3-2- PTM infestation in tubers of certain potato varieties	57
3-3-Effect of moisture content (sap leaves) on the infestation	
with Ph. operculella	59
3-4- Free phenols content in relation with PTM infestation in	
certain potato varieties	62
3-5- Monitoring life table bio aspects for rearing <i>Ph. operculella</i>	<i>C</i> 1
survivors on variable potato varieties	64
a- Survival and fecundity rates	64
b- Net reproductive rate (R ₀)	70
c- Generation duration (Gt)	70
d- Intrinsic rate of increase (rm)	70
e- Finite rate of increase (λ)	70
f- Population doubling time (D.t.)	71
g- Natural mortality analysis	71
4- Simultaneous effect of certain thermal regimes on life table	
parameters of Ph. operculella	75
4-1- Age specific survivorship and fecundity	75
4-2- Life table parameters	83

a- Net reproductive rate (R ₀)	;
b- Generation duration (Gt)	;
c- Intrinsic rate of increase (rm)	;
e- Population doubling time (D.t.)	
5- Effect of recommended cultural practices on the potato tuber moth infestations	9
5-1-1-Foliage infestation	
5-1-2-Tuber infestation	
5-2- Effect of gab period between last irrigation and potato yield on infestation levels of PTM	
infestation with potato tuber moth	1
7- Predicting the changes in the population density of PTM 7-1- Based on data figures and the corresponding weather factors	1
7-1-1- Actual data figures	1
7-1-1-1 Actual weekly number of moths (Y) and weekly figures of daily mean temperature (X)	1
(LN Y) and the corresponding weekly average of daily mean temperature (X)	
7-1-1-3-Natural logarithm of both moth numbers (LN Y) and	
temperature (LN X)]
mean temperature (X) are considered	1
7-1-1-5- Natural logarithm of weekly number of captured moths (LN Y) and square root of mean temperature (\sqrt{X})]
7-1-1-6- When square root of both weekly moths numbers (\sqrt{Y})	
and mean temperature (\sqrt{X}) are considered	1

7-1-1-7- Square root of weekly numbers of moths (\sqrt{Y}) and
natural logarithm of weekly mean of temperature (LN X)
7-1-1-8- Observed weekly number of moths (Y) and natural
logarithm of weekly mean temperature (LN X)
7-1-2- Using sorted data figures
7-1-2- 1- Actual weekly number of moths (Y) and weekly mean
temperature (X)
7-1-2-2- Natural logarithm of weekly number of captured moths
(LN Y) and the corresponding weekly average of daily mean
temperature (X)
7-1-2-3- Natural logarithm of both moth numbers (LN Y) and
temperature (LN X)
7-1-2-4- When square root of weekly moths numbers (\sqrt{Y}) and
mean temperature (X) are considered
7-1-2-5- Natural logarithm of weekly number of captured moths
(LN Y) and square root of mean temperature (\sqrt{X})
7-1-2-6- When square root of both weekly moths numbers (\sqrt{Y})
and mean temperature (\sqrt{X}) are considered
7-1-2-7- Square root of weekly numbers of moths (\sqrt{Y}) and
natural logarithm of weekly mean of temperature (LN X)
7-1-2-8- Observed weekly number of moths (Y) and natural
logarithm of weekly mean temperature (Log X)
7-2- Forecasting <i>Ph. operculella</i> population trend based on day-
degrees during 2007 season
7-2-1- Actual data figures
7-2-1-1- Actual weekly number of moths (Y) and weekly mean
figures of both maximum (X_1) and minimum temperature (X_2)
7-2-1-2- Actual weekly number of moths (Y) and weekly mean
of degree-days (X)
7-2-2- Using sorted data figures
7-2-2-1- Actual weekly number of moths (Y) and weekly mean
figures of both maximum (X_1) and minimum temperature (X_2)
7-2-2- Actual weekly number of moths (Y) and weekly mean
of degree days (X)

8- Damage loss assessment based on potato tuber moth
infestations
a- Season 2006
i) Adopting actual data figures (non sorted data)
ii) Adopting sorted data
1- Sorted weight data figures (Y) and the corresponding sorted
yield losses (X ₁)
2- Sorted yield weight data (Y) and the corresponding sorted
total number of holes/plant (X ₂)
3- Sorted yield weight data (Y) and the corresponding sorted
number of larvae (X ₃)
b - Season 2007
a) Based on actual data figures
b) Considering sorted data figures
1- Sorted weight data figures (Y) and the corresponding sorted
yield losses (X ₁)
2- Sorted yield weight data (Y) and the corresponding sorted
total number of holes/plant (X ₂)
3- Sorted yield weight data (Y) and the corresponding sorted
number of larvae (X_3)
c – Average of 2006 & 2007 season
i- Considering actual data
ii- Using sorted data figures
1- Sorted weight yield figures (Y) and sorted losses (X)
2- Sorted weight data figures (Y) and sorted total number of
holes (X) per plant
3- Sorted weight data (Y) and sorted collected number of larvae
(X)
V-SUMMARY
VI-REFRENCES
VII-ARABIC SUMMARY

LIST OF FIGURES

Fig	Title	Page
Fig. (1):	Fluctuations in the population density of PTM as	
	determined by water pan sex pheromone trap during 2006 &	
	2007	50
Fig. (2):	Mean number of <i>Ph. operculella</i> larvae infestations on four	
- 1 (2)	potato varieties during summer seasons of 2006 and 2007	56
Fig. (3):	The fluctuations in the age-specific survival rates (Lx) of	
	Ph. operculella adult females reared at different constant	0.0
F' (4)	temperatures	82
Fig. (4):	• • • • • • • • • • • • • • • • • • • •	0.2
F: (5)	females at different constant temperatures	82
Fig. (5):	Percentage of larval content in leaflets as affected by	0.4
Ei ~ (6).	fertilization rates during 2006 & 2007 summer seasons	94
rig. (6):	Percentage of infested potato tubers as affected by	95
Fig. (7):	fertilization rates during 2006 & 2007 summer seasons Percentage of larval content in tubers as affected by	93
11g. (7).	fertilization rates during 2006 & 2007 summer seasons	95
Fig (8):	Percentage of infested potato tubers as affected by period)3
1 16. (0).	between final irrigation and harvest time during 2006 &	
	2007 summer seasons	99
Fig. (9):	Percentage of larval content in tubers as affected by period	
8. (>).	between final irrigation and harvest time during 2006 &	
	2007 summer seasons	100
Fig. (10)	:Percentage of infested potato tubers as affected by period	
	between harvest and removing tubers to stores during 2006	
	& 2007 summer season	102
Fig. (11)	:Percentage of larval content in tubers as affected by period	
	between harvest and removing tubers to stores during 2006	
	& 2007 summer season	102
Fig. (12)	:Number of weekly captured moths for each of the 4 moon	
	phases for complete year of 2007 at Qalyubiya Governorate	106
Fig. (13)	:The relation between the effect of changes of four quarter	
	phases of moon and the population density of potato tuber	
	moth	106

Fig. (14): The relationship between actual and estimated potato yield	
using losses in Atlas variety, season 2006 at Qalyubyia	
Governorate	131
Fig. (15): The relationship between actual and estimated potato yield	
using No. of holes in Atlas variety, season 2006 at	
Qalyubyia Governorate	133
Fig. (16):The relationship between actual and estimated potato yield	
using larval content in Atlas variety, season 2006 at	
Qalyubyia Governorate	134
Fig. (17): The relationship between actual and estimated potato yield	
using losses in Atlas variety, season 2007 at Qalyubyia	
Governorate	144
Fig. (18): The relationship between actual and estimated potato yield	
using No. of holes in Atlas variety, season 2007 at	
Qalyubyia Governorate	145
Fig. (19):The relationship between actual and estimated potato yield	1
using larval content in Atlas variety, season 2007 at	
•	146
Fig. (20):The relationship between actual and estimated potato yield	140
-	
using loses as an average of 2006 & 2007 seasons at	1.50
Qalyubiya Governorate	152
Fig. (21): The relationship between actual and estimated potato yield	
using number of holes as an average of 2006 & 2007	
	153
Fig. (22): The relationship between actual and estimated potato yield	
using number of holes as an average of 2006 & 2007	
seasons at Qalubiya Governorate	155

LIST OF TABLES

Table	Title	Page
Table (1):	Age specific life tables data figures expressed as definitions and corresponded formula	39
Table (2):	Fluctuations in collected of <i>Ph. operculella</i> moths by water pan sex pheromone trap at Qalyubiya, during 2006 & 2007	49
Table (3):	The approximated number and duration of potato tuber moth generations based on the weekly number of captured male moths at Qalyubyia Governorate during of 2006 & 2007	52
Table (4):	Larval infestation rate of <i>Ph. operculella</i> on four potato varieties during summer plantations of 2006 and 2007 at Oakmhing Comments.	
Table (5):	and 2007 at Qalyubiya Governorate	55 58
Table (6):	Correlation between larval and moisture content of different potato varieties leaves during summer plantation 2006	60
Table (7):	Correlation between larval and moisture content of different potato varieties leaves during summer plantation 2007	61
Table (8):	Free phenols content (ppm.) in relation with PTM infestation in potato tubers of four tested varieties during 2007 season	64
Table (9):	Life table parameters expressed as numbers of survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> when larvae were fed on potato tubers variety Atlas for one generation	66
Table(10):	Life table parameters expressed as numbers of survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> when larvae were fed on potato tubers variety Spunta for one generation	67

Table(11):	Life table parameters expressed as numbers of survivors (Lx) fecundity rates (Mx) of <i>Ph. operculella</i> when larvae were fed on potato tubers variety Simone for one generation	68
Table(12):	Life table parameters expressed as number of survivors (Lx) fecundity rates (Mx) of <i>Ph. operculella</i> when larvae were fed on potato tubers variety Nicola for the fall generation	69
Table (13):	Life table parameters of <i>Ph. operculella</i> larvae reared on four potato varieties	71
Table (14):	Changes in natural mortality parameters of potato tuber moth when larvae were fed on tubers of Atlas variety	72
Table (15):	-	73
Table (16):		73
Table (17):	•	73
Table (18):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 27±2°C.	76
Table (19):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 15°C	77
Table (20):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 20°C	78
Table (21):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 25°C	79
Table (22):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 30°C	80
Table (23):	Life table parameters as survivors (Lx) and fecundity rates (Mx) of <i>Ph. operculella</i> at 35°C	81
Table (24):	The impact of different constant temperatures on life table parameters of <i>Ph. operculella</i>	85