

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.190

EVALUATION OF PROGNOSTIC VALUE OF ADHESION MOLECULES IN SEPTIC CRITICALLY ILL PATIENTS

THESIS

Submitted to the Faculty of Medicine
University of Alexandria
in partial fulfilment of the requirements for

Doctor Degree of Critical Care Medicine

By **TAYSEER MOHAMED HANAFY ZEITOUN**MBBCh, Alex.

MEM, Alex

Faculty of Medicine
Alexandria University
2001

SUPERVISORS

Prof. Dr. MUHAMMAD IBRAHIM ABD EL-RASSOUL

Professor of Chest Diseases
Faculty of Medicine
University of Alexandria

Prof. Dr. BOUSSAINA ZAKI MASSOUD

Professor and Chairman of Microbiology and Immunology

Department

Faculty of Medicine

University of Alexandria

Prof. Dr. MONA SOBHY SIDRAK

Professor and Chairman of Clinical Pathology Department
Faculty of Medicine
University of Alexandria

CO-WORKERS

Dr. MAHA MOUNIR EL GHARBAWY

Assistant Professor of Microbiology and Immunology

Faculty of Medicine

University of Alexandria

Dr. MAHMOUD IBRAHIM MAHMOUD

Lecturer of Chest Diseases

Faculty of Medicine

University of Alexandria

ACKNOWLEDGMENT

I would like to express my deepest thanks and gratitude to the father of critical care Prof. Dr. MUHAMMAD IBRAHIM ABDEL-RASSOUL, Professor of Chest Diseases, Faculty of Medicine, University of Alexandria, for his supervision, encouragement, valuable advice and moral support.

It is a pleasure to take this opportunity to express my profound gratitude and appreciation to Prof. Dr BOUSSAINA ZAKI MASSOUD, Professor of Microbiology, Faculty of Medicine, University of Alexandria, whose kind supervision and unlimited help made this work possible.

I am greatly indebted to Prof. Dr MONA SOBITY
SIDRAK, Professor and Chairman of Clinical Pathology
Department, Faculty of Medicine, University of Alexandria, for
her kind guidance, careful and patient reading of the
manuscript.

My endless thanks and gratitude to Assistant Prof.

Dr. MAHA MOUNIR EL GHARBAWY, Assistant

Professor of Microbiology, Faculty of Medicine, University of

Alexandria, for her meticulous supervision and her great

interest in providing me with valuable criticism.

Last but not least, it is a pleasure to take this opportunity to express my profound gratitude and deepest thanks to Dr. MAHMOUD IBRAHIM MAHMOUD, Lecturer of Chest Diseases, Faculty of Medicine, University of Alexandria, for his excellent supervision, valuable advice and sincere help.

ABBREVIATIONS

ARDS:

Adult respiratory distress syndrome

CAMs:

Cell adhesion molecules

CARS:

Compensatory anti-inflammatory response

syndrome

CD

Cluster of differentiation

CI:

Cardiac index

CPR:

Cardiopulmonary resuscitation

CSF:

'Cerebrospinal fluid

DO₂:

Oxygen Delivery

ELAM (E-selectin):

Endothelial leukocyte adhesion molecule

FDA:

Food and drug administration

G-CSF:

Granulocyte colony-stimulating factor

GLyCAM-1:

Glycosylation-dependent cell adhesion molecule 1

HIV:

Human immunodeficiency virus

ICAM-1:

Intercellular adhesion molecule-1

ICU:

Intensive Care Unit

IFN-δ:

Interferon-8

IT-1:

Interleukin-1

iNOS:

inducible nitric oxide synthase

LAD:

Leukocyte adhesion deficiency

LBP:

Lipopolysaccharide binding protein

LECAM-1

Leukocyte endothelial adhesion molecule 1

LFA:

Lymphocyte function antigen

LPAM-1:

Lymphocyte peyer's patch adhesion molecule-I

LPS:

Lipopolysaccharide

MABs:

Monoclonal antibodies

MAP:

Mean arterial blood pressure

Mac-1:

Macrophage-1

MHC:

Major histocompatibility complex

MIF:

Macrophage inducing factor

MODs:

Multiple organ dysfunction syndrome

NCAM:

Neural cell adhesion molecule

NF-Kappa B:

Nuclear factor-Kappa B

NK Cells:

Natural killer cells

NO:

Nitric oxide

PECAM-1:

Platelet endothelial adhesion molecule 1

PAF:

Platelet activating factor

PGE₂:

Prostaglandin E₂

RVEF:

Right ventricular ejection fraction

SIRS:

Systemic inflammatory response syndrome

SV:

Stroke volume

SVI:

Stroke volume index

SVR:

Systemic vascular resistance

SWI:

Stroke work index

TCR

T-cell receptor

TLRs:

Toll-like receptors

TNF:

Tumour necrosis factor

VACM-1:

Vascular cell adhesion molecule 1

VLA:

Very late activation

 VO_2 :

Oxygen uptake

CONTENTS

CHAPTER		<u>PAGE</u>
I	INTRODUCTION	1
II	AIM OF THE WORK	80
III	MATERIALS	81
IV	METHODS	83
V	RESULTS	98
VI	DISCUSSION	160
VII	SUMMARY	192
VIII	CONCLUSIONS	197
IX	RECOMMENDATIONS	199
X	REFERENCES	200
	PROTOCOL	
	ARARIC SUMMARY	

INTRODUCTION

INTRODUCTION

Sepsis-Septic shock

Sepsis is the most common cause of shock in most intensive care units (ICUs) and is a leading cause of death.⁽¹⁾ Septic shock is the most common cause of death in medical and surgical intensive care units.^(2,3,4,5)

The incidence of sepsis is two to five times higher in intensive care units than in other hospital wards. (6) Statistics from the centers for disease control and prevention show that mortality from sepsis increased 13-folds from 1950 to 1991. (7,8)

Advances in medical practice and technology have increased the risk of sepsis and its sequelae. Among these are the aggressive use of catheters and other invasive equipment, implantation of prosthetic devices and administration of chemotherapy to cancer patients.⁽⁹⁾

Despite recent advances in medical technology, antimicrobial therapy, critical care and surgical techniques, there has been a little improvement in morbidity or mortality due to sepsis or septic shock. (3,10,11)

Mortality rates due to sepsis and septic shock are currently estimated to be 20% to 50% and 40% to 70%, respectively. (2,8,12,13,14)

Actiology:

Bacterial infection is the most common cause of septic shock. The most frequent sites of infection are the lungs, abdomen, and urinary tract.