بسم الله الرحمن الرحيم





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

# جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

# قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



# يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار "حفظ هذه الأفلام بعيدا عن الغبار %٤٠-٢٠ مئوية ورطوية نسبية من ٢٠-٤% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%



بعض الوثائـــق الاصليـة تالفـة



# بالرسالة صفحات لم ترد بالاصل

Cairo University
Faculty of Computers & Information
Information Technology Department

# A Proposed Design for Optical Digital Circuit

By Ayman Abdel Kader Ismail

A Thesis Submitted To The
Faculty of Computers & Information
Cairo University
In Partial Fulfillment of Doctor
of Philosophy In
Information Technology

Under the Supervision of

Prof. Sanaa El\_Ola Hanafi Ahmed Vice Dean for Education and Students Affairs

Prof. Imane Aly Saroit Ismail
Information Technology Department

V-0

\*

CAIRO **December 2007** 

## **Approval Sheet**

# A Proposed Design for Optical Digital Circuit

By Ayman Abdel Kader Ismail

A Thesis Submitted To The
Faculty of Computers & Information
Cairo University
In Partial Fulfillment of Doctor
Of Philosophy In
Information Technology

Approved By The Examining Committee

| Name                              | Title                                                                   | Signature  |
|-----------------------------------|-------------------------------------------------------------------------|------------|
| Prof. \ Sanaa El_Ola Hanafi Ahmed | Vice Dean For Education and<br>Students Affairs FCI Cairo<br>University | Savaa Ella |
| Prof. \ Yehia Abdel Hamid Badr    | Prof. Of Laser Spectroscopy Nile<br>Cairo University                    |            |
| Prof. \ Mohammed Mahmoud Elokr    | Prof. Of Sold State Faculty Of Science Al Azhar University              | M.M. Slok  |
| Prof. \ Imane Aly Saroit Ismail   | Prof. Of IT FC1 Cairo University                                        | Imane My   |

FACULTY OF COMPUTERS AND INFORMATION CAIRO UNIVERSITY- EGYPT December 2007

### Statement

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in candidature for any other degree.

Any portion of this thesis for witch I am indebted to other source are mentioned and explicit references are given.

Student Name: Ayman Abdel Kader Ismail

Signature: A

Date: 2 / 12/2007

### Acknowledgement

### Thanks Allah for what you give us,

Then, I'd like to thank Prof. Sanaa El\_Ola Hanafi Ahmed and Prof. Imane Aly Saroit Ismail for their kind supervision, guidance, invaluable advices and helpful encouragement. I'd like to thank all people who help me in my life and supported me emotionally and physically. And finally I'd like to thank this respect faculty and specially, Information Technology Department.

Ayman A. Lanail

### **Abstract**

Since several centuries, light get the attention in many situations like determine the coast and ports for ships and airplanes. It still used in communication between ships in the sea, determine the high buildings where a flash laps are positioned at every side of the building and high tours. Old Arab and Muslim society used sun positions and daylight to identify the pray time and use the moon to determine the months start.

On the other hand Greek and Roman use the sun to determine the start and end of the year. General phenomena were used in many different situations in human life. Along many centuries scientists start to analyze the nature of light and its phenomena where the speed of light was determined, wavelengths and frequencies, absorbing, reflection, refraction and transmittance of light have many studies.

In the last century electromagnetic waves was used to transmit analog and digital signals. Semiconductors materials were used to invent transistors and many electronic circuits which led to fast progress in the field of information by this time. In the last decade, optical fiber was used to transmit signals with very high speed, which make the nodes, switches and computer devices, bottlenecks for transmission and receiving digital signals. The research trends moved towards the use of optelectrical circuits, which still suffer of the same disadvantages of electrical circuits.

The new trend of research is inventing all optical digital circuits that work on optical inputs and output. Many researches was introduces in the visible range of electromagnetic spectrum and most of theses depends on absorption properties of light and suffer of high power signals required at the input ports and high heating of the circuits operation. With of the previous these circuits are working in the nano and pico second regime.

This thesis introduces a new proposed design for elementary digital circuits (NOT, AND and OR). The proposed design use optical tools like mirrors, lenses, attenuators and amplifiers as the base of the design. The inputs and outputs have the same wavelengths and frequencies the operations of the circuits do not change the

inputs to other wavelengths. These circuits use the range of infrared as inputs and outputs. The main idea is using phase shift of one beam and make it interfere with the other beam as destructive / constructive interference phenomena of the light and working in femto second regime.

### **Table Of Contents**

| Chapter 1: Introduction                         | 1  |
|-------------------------------------------------|----|
| Chapter 2: Light and Light Properties           | 5  |
| 2.1 General Properties of Waves                 | 6  |
| 2.2 Definition of Light                         | 8  |
| 2.2.1 Electromagnetic waves                     | 8  |
| 2.2.1.1 Infrared (IR)                           | 9  |
| 2.2.1.2 Different regions in the infrared       | 9  |
| 2.2.1.3 Telecommunication bands in the infrared | 11 |
| 2.2.2 Wave Particle Duality                     | 12 |
| 2.2.2.1 Photoelectric Effect                    | 13 |
| 2.3 Reflection of Light                         | 15 |
| 2.3.1 Reflection From Metal Surface             | 15 |
| 2.3.6 Phase Change                              | 16 |
| 2.3.7 Total Internal Reflection                 | 16 |
| 2.3.8 Reflection From Thin Films                | 17 |
| 2.4 Refraction                                  | 17 |
| 2.4.1 Refractive Index                          | 18 |
| 2.5 Diffraction                                 | 19 |
| 2.6 Dispersion                                  | 19 |
| 2.7 Interference                                | 20 |
| 2.8 Absorption of Light                         | 21 |
| 2.9 Polarization                                | 22 |
| 2.10 Photon Measurements                        | 24 |
| 2.10.1 The Lumen                                | 24 |
| 2.10.2 Luminous Flux                            | 24 |
| 2.11 Summary                                    | 25 |
| Chapter 3: Optical Materials & Instruments      | 26 |
| 3.1 Semiconductor / Transparent Materials       | 27 |
| 3.1.1 Optical Glasses                           | 30 |

| 3.1.2 Compound Materials                                                                                           | 32 |
|--------------------------------------------------------------------------------------------------------------------|----|
| 3.2 Mirrors                                                                                                        | 33 |
| 3.2.1 Plane (Flat) Mirror                                                                                          | 37 |
| 3.2.2 Dielectric Mirror Coatings                                                                                   | 38 |
| 3.2.3 Spherical Mirrors                                                                                            | 39 |
| 3.3 Lenses                                                                                                         | 41 |
| 3.4 Instruments Design                                                                                             | 42 |
| 3.4.1 Double-Chirped Mirror Design                                                                                 | 43 |
| 3.4.2 Infrared Beam Splitter                                                                                       | 43 |
| 3.4.3 Holographic Optical Element                                                                                  | 44 |
| 3.4.4 Diffractive Optical Elements                                                                                 | 44 |
| 3.4.5 Organic Multi State switch                                                                                   | 45 |
| 3.5 Summary                                                                                                        | 46 |
| Chapter 4: Previous Studies                                                                                        | 48 |
| •                                                                                                                  | 48 |
| <ul><li>4.1 Optical Pulse Generation Design</li><li>4.1.1 Pulse Generation of 5 fs with Octave Bandwidth</li></ul> | 48 |
|                                                                                                                    | 50 |
| 4.1.2 Ultra-broadband prism-less Ti:sapphire lasers                                                                | 52 |
| 4.1.3 Ultra-low-threshold, Low Cost, Femtosecond Laser                                                             | 32 |
| Technology 4.2 Optical Circuit Design                                                                              | 55 |
| 4.2 Optical Circuit Design 4.2.1 Spatial light modulator                                                           | 55 |
| 4.2.1 Spatial right modulator 4.2.2 Ptethynyl Thin Film switch                                                     | 56 |
| 4.2.3 All-Optical Switching Polymethine Dye                                                                        | 57 |
| 4.2.4 Phthalocyanine and Polydiacetylene Switching                                                                 | 57 |
| 4.2.5 NAND Gate Design                                                                                             | 59 |
| 4.2.6 OR Gate Design                                                                                               | 61 |
| 4.3 Summary                                                                                                        | 63 |
| Chantan 5, Duamand Daving For Dividal Outland Cinquita                                                             | 64 |
| Chapter 5: Proposed Design For Digital Optical Circuits                                                            | -  |
| 5.1 The Proposed NOT Circuit                                                                                       | 66 |
| 5.1.1 NOT Operation Verification                                                                                   | 68 |
| 5.1.2 Circuit Delay Analysis                                                                                       | 70 |

| 5.1.2.1 Lens Delay analysis           | 70  |
|---------------------------------------|-----|
| 5.1.2.2 The Total Delay Time          | 73  |
| 5.1.3 Optical path calculation        | 75  |
| 5.1.4 The Advantages of This Design   | 77  |
| 5.2 The Proposed AND circuit          | 77  |
| 5.2.1 The Proposed Design Description | 78  |
| 5.2.2 Operation Verification          | 80  |
| 5.2.3 Optical path calculation        | 85  |
| 5.2.4 Delay Analysis                  | 86  |
| 5.2.5 Total Delay Time                | 88  |
| 5.2.6 The Advantages of This Design   | 90  |
| 5.2.7 Design Enhancement              | 90  |
| 5.2.8 Multi-inputs AND Design         | 93  |
| 5.2.8.1 Series Design                 | 93  |
| 5.2.8.2 Single chip Design            | 94  |
| 5.3 The Proposed OR circuit           | 94  |
| 5.3.1 The Proposed Design             | 95  |
| 5.3.2 OR operation verification       | 97  |
| 5.3.3 Operation Analysis              | 98  |
| 5.3.4 Optical path calculation        | 101 |
| 5.3.5 Delay Analysis                  | 101 |
| 5.3.5.1 Total Delay Time              | 102 |
| 5.3.6 The Advantages of This Design   | 103 |
| 5.3.7 Design Enhancement              | 103 |
| 5.3.8 Multi-inputs OR Design          | 105 |
| 5.3.8.1 Series/Multi-Stages Design    | 105 |
| 5.3.8.2 Single chip Design            | 106 |
| 5.4 Summary                           | 106 |
| Chapter 6: The Simulation Experiments | 107 |
| 6.1 Simulation Description            | 108 |
| 6.2 Not Circuit Simulation            | 110 |
| 6.2.1 Case Input Data = logic 0       | 111 |

| 6.2.2 Case Input Data = logic 1      | 115 |
|--------------------------------------|-----|
| 6.3 AND Circuit Simulation           | 118 |
| 6.3.1 Case Input Data = logic (0,0)  | 119 |
| 6.3.2 Case Input Data = logic (1, 0) | 123 |
| 6.3.3 Case Input Data = logic (0,1)  | 128 |
| 6.3.4 Case Input Data = logic (1, 1) | 132 |
| 6.4 OR Circuit Simulation            | 137 |
| 6.4.1 Case Input Data = logic (0, 0) | 137 |
| 6.4.2 Case Input Data = logic (1, 0) | 140 |
| 6.4.3 Case Input Data = logic (0, 1) | 143 |
| 6.4.4 Case Input Data = logic (1, 1) | 145 |
| 6.5 Conclusion                       | 148 |
| Chapter 7: Conclusion & Future Work  | 149 |
| 7.1 Conclusion                       | 151 |
| 7.2 Future Work                      | 152 |
| References                           | 153 |