

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRONICS & COMMUNICATIONS DEPARTMENT

Implementation and Characterization of X-Ray Medical Imaging

System

A Thesis

Submitted to the Electronics and Communications Department, Faculty of Engineering, Ain Shams University For Master Degree in Electrical Engineering

Submitted By **Abdelhady Ali Hassen Ellakany**

B. Sc. Electronics and Communications -2009

Supervised By

Prof. Dr. Ismail Mohamed Hafez

Faculty of Engineering, Ain Shams Univ.

Prof. Dr. Christian Gontrand

INSA-Lyon, Lyon, France.

Assoc. Prof. Mohamed Abdelhamid Abouelatta

Faculty of Engineering, Ain Shams Univ.

Cairo, Egypt, 2017

APPROVAL SHEET

Thesis title: Implementation and Characterization of X-Ray Medical Imaging System By: Abdel Hady Ali Ellakany **Degree:** Master of Science in Electronics Engineering. This Thesis for Master Degree has been approved by: Prof. Dr. El-Sayed Mahmoud El-Rabaie **Signature** Faculty of Electronics Engineering (.....) Menoufia Univ. Prof. Dr. Abdelhalim Abdelnaby Zekry Electronics and Communications Eng. Dept., (.....) Ain Shams Univ. Prof. Dr. Ismail Mohamed Hafez Electronics and Communications Eng. Dept., (.....) Ain Shams Univ.

Date of Examination: 29 / 7 / 2017

Abstract

X-ray imaging is a well-known imaging modality that has been used for over 100 years since Roentgen discovered X-rays based on his observations of fluorescence. His initial results were published in 1885. Since 1901, equipment manufacturers started selling X-ray equipment.

Today, X-ray and its three-dimensional (3D) extension, computed tomography (CT), are used commonly in medical diagnosis. Medical imaging system consists of source of x-ray and detectors. The detectors are developed to meet future medical application like decreasing charge sharing.

The 3D silicon detector structure and 3D cadmium telluride (CdTe) detector structure are investigated. The simulation of the 3D structure is carried out by using SILVACO TCAD. The obtained results are used as a proof of concept for investigating the 3D detectors in different scientific applications. Also, it is designed to have a good charge collection efficiency, position resolution and reduced charge sharing effects.

The collection time of 3D silicon detector evaluated 6 nsec at 1.5 V, 4 nsec at 3.3 V and stray capacitance of structure is .14 Pf at 10 V, the leakage current at 3.3 volts is about 9nA.

The collection time of the 3D CdTe structure is about 4×10^{-11} s at 15 V. The fast and hard detection of the structure makes it suitable for stopping power up to 3TeV, which meets the future applications of SLHC. The very low leakage current, which is about 16 pA at 16 volts, is very attractive for most future applications

which allow us to apply higher bias voltage than was possible with previous traditional 2D CdTe detectors. The 3D CdTe technology could be recommended for future high-energy physics and medical applications.

Also, a system of a hybrid pixel detector has been developed. The purpose is to create a flexible and reliable model that simulates the entire system, starting from a 3D detector to a data acquisition system and processing analysis. The model flexibility is achieved by minimizing interdependencies among its entities, so they can be added or removed as needed. The implementation of the system is accomplished using SILVACO and Simulink/MATLAB.

Simulink is used to implement the readout circuit. The front-end readout circuit includes the Charge Sensitive Amplifier (CSA) and Active Shaper. The most suitable approach and parameters for a real system are selected according to the simulation results. Additionally, practical design constraints are also included in the model.

Keywords—SILVACO; Simulink/MATLAB; Silicon Detector; X-ray system; Three –dimensional structure; 3D CdTe Detector; Hybrid pixel detector

Statement

This thesis "Implementation and Characterization of X-Ray Medical Imaging

System" is submitted to Faculty of Engineering, Ain Shams University for the

degree of master in Electronics engineering.

The work included in this thesis was carried out by the author. No part of this thesis

has been submitted for a degree or a qualification at any other University or

Institution.

DATE: 29 /7 /2017

Author: Abdelhady Ali Hassan Ellakany.

Signature:....

Acknowledgements

This thesis could not be completed without the help and support from many people.

I would like to express my deepest gratitude to *Prof. Dr. Ismail Mohamed Hafez*, Electronics and Communication Department, Faculty of Engineering, Ain Shams University, and *Prof. Dr. Christian Gontrand*, Lyon France, for their guidance, generous assistances, encouragement and supervision of this work.

Also, I would like to express my gratitude to my supervisor, *Assoc. Prof. Mohamed Abouelatta*, for his continuous guidance. Without his valuable advice, none of this work would have been achieved. His efforts and encouragements will never be forgotten. But my only wish is that guiding me through this M. Sc has not been such a nightmare for him after all. Thanks to *Assoc. Prof. Ahmed Shaker* has also contributed in this mentoring process. Working with the SILVACO TCAD team has also been a great privilege. Also, I want to thank *Prof. Abdelhalim Zekry* and *Dr. Gihan Sayah* for their guidance.

Table of Contents

Abstract	iii
Acknowledgements	vi
Table of Contents	vii
List of Figures	xi
List of Tables	
List of Publications	xv
Nomenclature	xvi
Abbreviation	xvi
Chapter 1 Introduction	1
1.1 Background	1
1.2 The Problem Domain and the Specific Problem Addressed	5
1.3 Research That Has Been Carried out	6
1.4 The Expected or Achieved Contributions	7
1.2 Thesis Structure	8
Chapter 2 literature Review of Medical Detectors	11
2.1 Historic Review	11
2.2 Present Detection System	14
2.2.1 Silicon as Absorption Material in X-Ray Detectors	15
2.2.2 Germiunm as Absorption Material in X-Ray Detector	16
2.2.3 Cadmium Telluride as Absorption Material in X-Ray Detector	16
2.2.4 Cadmium Zinc Telluride as Absorption Material in X-Ray	17
Detector	
2.2.5 Comparison between Different Materials	18
2.3 Planar Detectors and Their Limitation	19

2.3.1 Charge Coupled Devices (CCDs)	19
2.3.2 CMOS Pixel Sensors	20
2.3.3 Limitations of Conventional Pixel Detector	21
2.3.3.1 The Collection Time	21
2.3.3.2 Inactive Area	22
2.3.3.3 Depletion Voltage	22
2.4 Advantages of 3D Detectors	23
2.4.1 Fabrication	23
2.4.2 Fast Charge Collection Time	25
2.4.3 Charge Sharing	26
2.4.4 Radiation Hardness	26
2.4.5 Active Edge	27
2.5 Induced Signals in the 3D Detectors	29
Chapter 3 Modeling and Simulation of 3D Detector	33
	33 34
3.3 Simulation by SILVACO Device	37
3.3.1 Physics Models	37
3.3.1.1 SHOCKLY-READ-HALL Models Recombination in the	37
Bulk	
3.3.1.2 Auger Recombination Model	40
3.4 Heavy Ion Model Simulation (Single event upset effect)	41
3.5 Interactions of Photons	42
3.5.1 Photoelectric Effect	43
3.5.2 Compton Scattering	45
3.5.3 Pair Production	47
3.6 Mechanisms of Traps Generation	49

	3.6.1 Increase in Leakage Current under Bias	51
	3.6.2 Increase in Effective Doping Concentration	52
	3.6.3 Trapping of Free Charge Carriers	53
	3.7 Trap Levels is Used SILVACO Simulation	54
	3.7.1 Trap Level in Silicon	54
	3.7.2 Acceptor Trap in CdTe	54
	3.8 Carrier Lifetime in Semiconductor	55
	3.8.1 Definition of Carrier Lifetime in Semiconductor	55
	3.8.2 Control of Charge Carrier Lifetime	56
	3.8.3 Irradiation Effects on Carrier Lifetime	57
	3.9 The Full Depletion Voltage (VFD)	58
	3.9.1 Cylindrical Junction	58
	3.10 Charge Collection Time	60
Cha	pter 4 Simulation Results of 3D Detectors	63
Cha	pter 4 Simulation Results of 3D Detectors 4.1 Results of 3D silicon detector. 4.1.1 Leakage Current	63 63
Cha	4.1 Results of 3D silicon detector	63
Cha	4.1 Results of 3D silicon detector	63 63
Cha	4.1 Results of 3D silicon detector	63 63 64
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3Volts.	63 63 64 64
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3Volts. 4.1.4 The Small Signal Simulation Results.	63 64 64 66
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3Volts. 4.1.4 The Small Signal Simulation Results. 4.1.5 Discussions about Simulation Results.	63 63 64 64 66
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3 Volts. 4.1.4 The Small Signal Simulation Results. 4.1.5 Discussions about Simulation Results. 4.1.6 The Electrostatic Potential Distribution. 4.2 Results of 3D CdTe Detector.	63 63 64 64 66 66 67 69
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3Volts. 4.1.4 The Small Signal Simulation Results. 4.1.5 Discussions about Simulation Results. 4.1.6 The Electrostatic Potential Distribution. 4.2 Results of 3D CdTe Detector. 4.2.1 Leakage Current of CdTe Detector.	63 63 64 64 66 66 67 69
Cha	4.1 Results of 3D silicon detector. 4.1.1 Leakage Current 4.1.2 Impulse Cathode Current at 1.5 V. 4.1.3 Impulse Cathode Current at 3.3Volts. 4.1.4 The Small Signal Simulation Results. 4.1.5 Discussions about Simulation Results. 4.1.6 The Electrostatic Potential Distribution. 4.2 Results of 3D CdTe Detector. 4.2.1 Leakage Current of CdTe Detector 4.2.2 Operation of the3D Detector at Low Voltage.	63 63 64 64 66 67 69 70

4.2.6 The Effect of Temperature on Cadmium Telluride Detector	75
4.2.7 The Small Signal Simulation Results of CdTe	76 77
4.2.9 Simulation Comparison with Implemented published Structure	78
4.2.10 Stopping power	79
Chapter 5 A complete System of X-Ray Detection	81
5.1 SILVACO and MATLAB Framework Description	81
5.2 MATLAB Implementation Blocks	82
2.5.1 Readout Circuit by MATLAB	82
2.5.1.1 Preamplifier	83
2.5.1.2 Shaper	83
5.3 MATLAB Simulation Results	84
Chapter 6 Conclusions and Future Work	89
6.1 Conclusions	89
6.2 Future Work	91
References	93
Appendices	103
Appendix A1: Source Code for Silicon	104
Appendix A2: Source Code for CdTe	108

List of Figures

Fig. 1.1 Basic structure used in simulation using SILVACO	3
Fig. 1.2 Structure of a 3D detector with electrodes penetrating through	
the entire substrate	3
Fig. 2.1 A conventional planar electrode detector and inactive area	22
Fig. 2.2 Collecting electrodes of 3D detector whilst induced signal is	
spread out in time for a planar device	26
Fig. 3.1 Basic structure used in simulation using SILVACO	34
Fig. 3.2 mesh used in 3D detector	35
Fig. 3.3 Doping concentration in a horizontal cross section	36
Fig. 3.4 Doping concentration in a horizontal cross section	36
Fig. 3.5 Details of the indirect recombination via trap center at $E=E_t$	
showing the emission and capture Processes of electrons and	
holes, via the trap center	39
Fig. 3.6 Schematic illustration of the auger recombination mechanism.	40
Fig. 3.7 Concept of attenuation	43
Fig. 3.8 Concept of photoelectric absorption	43
Fig. 3.9 Concept of Compton scattering	46
Fig. 3.10 Concept of pair production	47
Fig. 3.11 Attenuation coefficient	48
Fig. 3.12 Dominance of the interaction mechanisms at various	
energies for given Z-material	48
Fig. 3.13 Energy band diagram illustrating how traps produce leakage	
current, space charge and trapping of excess carriers	51
Fig. 3.14 The Trap model used in silicon	54

Fig. 3.15 Illustration of the acceptor trap model that is used in	
CdTe	55
Fig. 3.16 Effective minority carrier lifetime versus doping	
concentration	57
Fig. 3.17 The cylindrical junction.	59
Fig. 4. 1 The dark I-V characteristics of 3D detector	64
Fig. 4.2 Cathode current pulse shape produced by the 3D detector at	
1.5 and 3.3 V.	65
Fig. 4.3 The C-V characteristic of detector	65
Fig. 4.4 3D Detector electrostatic potential contours at $V_k = 3.3 \text{ V}$	66
Fig. 4.5 3D Detector electrostatic potential contours at $V_k = 100 \text{ V}$	67
Fig. 4.6 Electrostatic potential contours in a vertical cross-section at	
$V_k = 100 \text{ V}$	68
Fig. 4.7 Potential distribution in the planar detector at 200V	68
Fig. 4.8 The Leakage current is presented to the 3D detector from 0 to	
16 V	69
Fig. 4.9 Output current of 3D CdTe at 3.3 V	71
Fig. 4.10 Output current at 3TeV and 10 V.	72
Fig. 4.11 output of 3D CdTe current at 15 V	72
Fig. 4.12 Output current of 3D at 3TeV and 15 V	73
Fig. 4.13 I-V characteristic of 3D CdTe detector at different	
temperatures	76
Fig. 4.14 The C-V curves of the 3D CdTe detector	77
Fig. 4.15 Electrostatic potential distribution off 3D CdTe detector at	
16 V	77
Fig. 4.16 Simulation comparison of CdTe at (a) 30 °C. and (b) 70 °C	70

Fig. 4. 17 (a) Silicon at 0.1 keV energy, 10-8cm diameter and 1000	
(b) CdTe at 0.1 keV energy, 10-8cm diameter and 1000	80
Fig.4. 18 (a) Silicon at 100 keV, 1000 photon and 10-8cm diameter	
(b) CdTe at 100 keV, 1000 photon and 10-8cm diameter	80
Fig. 5.1 Combined simulation workflow	81
Fig. 5.2 Block diagram of an x-ray model.	83
Fig. 5.3 Output signal from SILVACO as MATLAB input	85
Fig. 5.4 Block diagram of read out circuit	86
Fig. 5.5 Output signal from MATLAB	87
Fig. 5.6 Output signal from shaper	87
Fig. 6.1 Smart detector system.	91

List of Tables

Table 1.1 Physical properties of semiconductors materials	
Table 4.1 Mobility of electron and hole in CdTe	70
Table 4.2 Comparison between the output results	69
Table 4. 3 Physical models equations	75

List of Publications

- [1] A. Ellakany, A. Shaker, M. Abouelatta, I. M. Hafez and C. Gontrand, "Modeling and simulation of a hybrid 3D silicon detector system using SILVACO and Simulink/MATLAB framework," 28th International Conference on Microelectronics (ICM), Giza, pp. 377-380, 2016.
- [2] A. Ellakany, A. Shaker, M. Abouelatta, I. M. Hafez, and C. Gontrand, "Development and simulation of 3D CdTe Pillar detector", IEEE Transactions on Radiation and Plasma Medical Science.(submitted)
- [3] A. Ellakany, M. Abouelatta, A. Shaker, I. M. Hafez, and C. Gontrand, E. El-Rabaie, "Towards 3D Nuclear Detectors".(It will be submitted to Menoufia Journal of Electronic Engineering Research, MJEER)