

DEVELOPMENT OF NUCLEAR TECHNIQUES FOR LANDMINE DETECTION AND ILLICIT MATERIALS

Thesis
In Partial Fulfillment of the Requirements of the
Degree of Ph.D. in Physics

BY

AHMED MAHMOUD OSMAN ABDOH

Under Supervision of

Prof. Dr. Samir Usha El-Kameesy Faculty of Science, Ain Shams University

Prof. Dr. Riad Mostafa Megahid Nuclear Research Centre, Atomic Energy Authority

Dr. Salh Mohammed Metwally Faculty of Science, Ain Shams University

Dr. Wagdy Ahmed Kansouh Nuclear Research Centre, Atomic Energy Authority

> Physics Department, Faculty of Science Ain Shams University Cairo, Egypt 2009

APPROVAL SHEET

Title of the Ph.D. Thesis

DEVELOPMENT OF NUCLEAR TECHNIQUES FOR LANDMINE DETECTION AND ILLICIT MATERIALS

Name of the candidate

AHMED MAHMOUD OSMAN ABDOH

<u>Supervisors:</u>	<u>(signature)</u>
Prof. Dr. Samir Usha El-Kameesy Faculty of Science, Ain Shams University	()
Prof. Dr. Riad Mostafa Megahid Nuclear Research Centre, Atomic Energy Authority	()
Dr. Salh Mohammed Metwally Faculty of Science, Ain Shams University	()
Dr. Wagdy Ahmed Kansouh Nuclear Research Centre, Atomic Energy Authority	()

Ain Shams University Faculty of Science

Name: Ahmed Mahmoud Osman Abdoh

Degree: Ph.D.

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Date: 2001-El-Azhar university

Registration Date: 15/1/2007

Grant Date: 2009

Dedication

This work is gratefully dedicated to

My Father

My Mother

My wife

My Son

My Daughter

Author

Ahmed Mahmoud Osman

Table of Contents

Acknowle	dgment	
Table of C	ontents	
List of Fig	ures	V
	les	
	lications	
	previations	
Abstract		XVII
Chapter (
General I	ntroduction	
	General Introduction	1
	General introduction	1
Chapter T	`wo	
Current T	echnologies for Demining and Detection of illicit ma	aterials
2.1. Int	oduction	16
2.2. His	tory of Landmines	16
2.3. Re	view of Technologies for Landmines/Illicit materials D	etection.18
2.3.1. Co	nventional Techniques	19
A.	Prodders and Probes	19
B.	Metal Detectors (MDs)	20
C.	Mine Clearing Machines	
2.3.1.1.	Limitations of the Conventional Techniques	
2.3.2. Inn	ovative Techniques	
2.3.2.1.	Innovative Electromagnetic Detection Method	
a.	Ground Penetrating Radar (GPR)	
b.	Magnetic Sensors.	
c.	Electrical Impedance Tomography	
2.3.2.2.	Infrared/Hyperspectral Systems	28
2.3.2.3.	Innovative Acoustic/Seismic Detection Methods	
2.3.2.4.	Innovative Vapor Detection Methods	31
A.	Biological Methods	
В.	Chemical Methods	
C.		

Chapter Three

Nuclear Technologies for Detection of Landmine and Illicit materials

3.1.	Intr	oduction	40
3.2.	Exp	olosive Materials	40
3.2.1.	Тур	pes of Explosives	42
3.3.	Nuc	clear Techniques for explosive and Illicit Materials Detection	44
3.3.1.	Nuc	clear Techniques Based on Density variation	45
3.3.1.1	. X	-ray Imaging Technique	45
3.3.1.2	. G	amma-ray Imaging Technique	46
3.3.2.	Nuc	clear techniques based on nitrogen density variation	47
		ositron Emission Tomography (PET)	
3.3.2.2	. Tl	hermal Neutron Activation Analysis (TNA)	48
3.3.2.3	. N	uclear Quadruple Resonance (NQR)	50
3.3.3.	Nuc	clear Techniques Based on Hydrogen Density Variation	53
		hermal Neutron Backscattering Technique	
3.3.3.2	. Fa	ast Neutron Backscattering Technique	55
3.3.4.	Nuc	clear techniques based on analysis of material whole elements.	55
3.3.4.1	. Fa	ast Neutron Activation Analysis (FNA)	56
3.3.4.2	. Fa	ast Neutron Scattering Analysis (FNSA)	56
3.3.4.3	. Pı	ulsed F/T Neutron Activation analysis (PFTNA)	58
3.3.4.4	. Pı	alsed fast neutron transmission spectroscopy (PFNTS)	59
3.3.4.5	. A	ssociated Particle Technique	61
3.3.4.6	. Fa	ast Neutron Resonance Radiography (FNRR)	62
Chapte Install		our Combined Systems and Measuring Procedures	
4.1.	Inte	oduction	66
		pt SCAnning LAndmine Detector ESCALAD utron Backscattering Device	
		NBS Detectors	
	B.	Neutron sources	
		Neutron Scatterers and Reflectors	
		Measuring Electronics.	
	E.	Trolley	
4.2.1.1		Measuring procedures	
4.2.1.2	•	Performance Measurements	/3

A.	Energy spectra	75
B.	Position distribution	75
C.	Gamma-Ray Discrimination	76
4.2.1.3.	Optimization of Neutron Sources Geometry	79
4.2.1.4.	ESCALAD Workability	81
4.2.1.5.	Test Site	81
4.2.2. Ele	emental Analysis Device	83
4.2.2.1.	Spectrometer Characterize	84
4.2.2.2.	Experimental Arrangement	86
4.2.2.3.	Measuring Procedures	86
4.2.3. Ex	amined Landmines and other suspected objects	87
4.3. Ins	pection System for Explosives and Illicit Material	88
4.3.1. Me	echanical system	88
4.3.2. Ra	diation sources	90
4.3.3. Me	easuring instruments	90
4.3.4. Da	ta processing and analysis	91
4.3.5. Ex	amined Explosive and other suspected objects	92
	nd Discussion	
5.1. De	tection of Landmines	94
5.1.1. Ne	utron Backscattering by NBS Device	94
5.1.1.1.	Effect of Neutron Sources Geometry	95
A.	System Reliability	99
B.	Dependence on side distance.	101
C.	Effect of sources separating distances	104
5.1.1.2.		
	System Workability	108
I.	System Workability	
I. II.		114
	Maximum Detection Depth	114 117
II. III.	Maximum Detection Depth	114 117 121
II. III. IV.	Maximum Detection Depth Maximum Stand-off Distance Scanning Width	114 117 121 125
II. III. IV. V.	Maximum Detection Depth. Maximum Stand-off Distance. Scanning Width. Surface Roughness.	114 117 121 125 130
II. III. IV. V.	Maximum Detection Depth. Maximum Stand-off Distance. Scanning Width. Surface Roughness. Result Obtained by Combined Detection System.	114 117 121 125 130 132
II. III. IV. V. 5.1.2. Re	Maximum Detection Depth Maximum Stand-off Distance Scanning Width Surface Roughness Result Obtained by Combined Detection System sults Obtained by Elemental Analysis device Plain Soil Gamma ray Spectra for APM	114 117 121 125 130 132 132
II. III. IV. V. 5.1.2. Re 5.1.2.1.	Maximum Detection Depth. Maximum Stand-off Distance. Scanning Width. Surface Roughness. Result Obtained by Combined Detection System. sults Obtained by Elemental Analysis device. Plain Soil.	114 117 121 125 130 132 132

5.2.	Detection of Illicit Materials	141
5.2.1.	Gamma-ray Scanner Technique	141
5.2.2.	Neutron Identifier Technique	143
Chapt Concl	er Six usions and Recommendations	
	Conclusions and Recommendations	152
Apper	ndices	
	Appendix - 1	159
	Appendix - 2	162
	Appendix - 3	
	Appendix - 4	210
	Appendix - 5	213
	References	214
	Arabic Summery	

List of Figures

2.1.	Sectioned diagram of a PMN mine	18
2.2.	Section of an anti-tank mine	18
2.3.	Fully man point stick method for detection of landmine	19
2.4.	Typical construction of metal detector	20
2.5.	Panther armoured mine clearing vehicle	21
2.6.	Ground Penetrating Radar at work	24
2.7.	The Electrical Impedance Tomography EIT detector prototype	27
2.8.	Infrared Imaging in action	28
2.9.	A conceptual design of a robotic acoustic land-mine detection system	30
2.10.	Mine Detecting Dog and Rat in use	31
2.11.	Illustration of a tagged bee.	34
2.12.	Bacterial biosensors for mine detection.	36
2.13.	Fluorescent polymer sensors.	37
3.1.	Over-view of some common explosive structures.	42
3.2.	Decay scheme and branching ratios for thermal radiative capture for ¹⁵ N.	49
3.3.	Schematic diagram shows the principle of the NQR system.	50
3.4.	Neutron scattering angle for various elements.	57
3.5.	Schematic illustration of the FNSA detection setup.	58
3.6.	DT Pulsed neutron generator and its time sequence.	59
3.7a)	Schematic description of the PFNTS method.	60

3.7b)	The total cross sections of C, N, O, and H.	60
3.8.	Neutron yield spectrum at different deuteron energies for the Be(d,n) reaction.	60
3.9.	Schematic diagram of the tagged neutron production and the nuclear reaction initiated by fast neutrons.	61
3.10.	Schematic diagram of Associated Particle Technique using salad tube neutron generator.	62
3.11.	Total neutron cross-section for Carbon.	63
3.12.	D-D Neutron energy emission angle.	64
3.13.	Rotational Geometry.	64
4.1.	Schematic diagram for NBS detector array while scanning over a landmine.	67
4.2.	Measured neutron spectrum form ²⁵² Cf source.	69
4.3.	Measured neutron spectrum from Pu-α-Be source.	69
4.4.	Overview of two different types fast neutron scatterers.	70
4.5.	Overview of neutron reflector.	70
4.6.	Schematic diagram for the ESCALAD system.	71
4.7.	Photographs of ESCALAD system arrangement.	72
4.8.a)	Pulse height spectra from all neutron detectors (16- ³ He-tubes) in ESCALAD system.	75
4.8.b)	Expected pulse height spectrum from a ³ He tube.	75
4.9.	Position distribution of the measured backscattered thermal neutrons from Pu - α -Be neutron source placed at the center.	76
4.10.	Position distribution of the measured backscattered thermal neutrons form two Pu- α -Be neutron sources placed at the center.	76
4.11.	Counting curves for ESCALAD detectors generated by	77

		1	.1 1 1 1	1			1
varvino	T P	lectronic	threshold	under	constant	SOURCE	conditions
vai yiiig		1CCH OIIIC	unconord	unuci	Constant	Source	contantions

4.12.	The pulse height spectra for Pu - α -Be neutron source measured by ESCALAD detectors with different electronic threshold for gamma ray discrimination.	78
4.13.	The geometry of the selected section on the detector tray with one Pu - α -Be source fixed at the center.	80
4.14.	The geometry of the selected section on the detector tray with two Pu - α - Be sources fixed at different apart distances.	80
4.15.	Impressions from (a) Our test area and the soil surface. (b) Ground structure in Alamein area.	82
4.16.	Overview of detection system: NaI(Tl) detector, pulse processing, and measuring PC.	84
4.17.	An example of a linear-scale spectrum for $^{137}\mathrm{Cs}$ and $^{60}\mathrm{Co}$ gamma sources.	85
4.18.	Energy calibration curve of the gamma ray spectrometer.	85
4.19.	Experimental arrangement for (n, γ) technique.	86
4.20.	Photographs of the combined systems.	88
4.21.	Schematic diagram of the gamma scanner and associated radiation measuring systems.	89
5.1.	Constructed 2D-image of fast neutrons flux distribution along the tube axis from a single Pu- α -Be source.	96
5.2.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from one Pu- α -Be source placed at the center.	96
5.3.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from one Pu- α -Be source placed at the center with cylindrical scatterer placed underneath the source.	97

5.4.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from one Pu- α -Be source placed at the center with pyramid-like shape scatterer placed underneath the source.	97
5.5.	Constructed 2D-image of fast neutron flux distributions along the tube axis from two Pu- α -Be neutron sources.	98
5.6.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from two Pu- α -Be sources placed at the center.	98
5.7.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from two Pu- α -Be sources placed at the center with cylindrical scatterer placed underneath the source.	99
5.8.	Spatial distributions and reconstructed 2D-images of backscattered thermal neutron flux from two Pu- α -Be sources placed at the center with pyramid-like shape scatterer placed underneath the source.	99
5.9.	Object with 166.7 hydrogen content/g.	100
5.10.	Object with 111.13 hydrogen content/g.	100
5.11.	Object with 59.28 hydrogen content/g.	101
5.12.	The mine was buried at side distance = zero cm.	102
5.13.	The mine was buried at side distance = 10 cm.	102
5.14.	The mine was buried at side distance = 15 cm.	103
5.15.	The mine was buried at side distance = 20 cm.	103
5.16.	Constructed 2D-image of fast neutron fluxes distributions along the tube axis with two neutron sources placed at 40 cm.	104

- **5.17.** Spatial distribution and reconstructed 2D-images of 105 backscattered thermal neutrons with two neutron sources placed at 40 cm apart with pyramid-like shape scatterer placed underneath the source.
- **5.18.** Constructed 2D-image of fast neutron fluxes distributions 106 along the tube axis from two neutron sources placed at 50 cm apart.
- **5.19.** Spatial distributions and reconstructed 2D-images of 106 backscattered thermal neutrons from two sources placed at 50 cm apart with pyramid like shape scatterer placed underneath the source.
- **5.20.** Constructed 2D-image of fast neutron fluxes distributions 107 along the tube axis from two sources placed at 60 cm apart.
- **5.21.** Spatial distribution and reconstructed 2D-images of 107 backscattered thermal neutron fluxes from sources placed at 60 cm apart with pyramid like shape scatterer placed underneath the source.
- **5.22.** Reconstructed 2D-images of backscattered thermal neutron 108 fluxes from sources placed at 60 cm apart with pyramid-like shape scatterer and with neutron reflector.
- **5.23.** Scanning speed = 30 mm/s. The measured mine position was approximately 200 cm.
- **5.24.** Scanning speed = 60 mm/s. The measured mine position was approximately 200 cm.
- **5.25.** Scanning speed = 130 mm/s. The measured mine position was 110 approximately 200 cm.
- **5.26.** Scanning speed = 200 mm/s. The measured mine position was 110 approximately 200 cm.

5.26.	Scanning speed = 290 mm/s. The measured mine position was approximately 220 cm.	111
5.28.	Scanning speed = 30 mm/s . The measured mine position was approximately 140 cm .	112
5.29.	Scanning speed = 60 mm/s. The measured mine position was approximately 200 cm.	112
5.30.	Scanning speed = 130 mm/s. The measured mine position was approximately 220 cm.	113
5.31.	Scanning speed = 200 mm/s . The measured mine position was approximately 230 cm .	113
5.31.	The measured mines signals buried at 2 cm depth at different scanning speed.	114
5.33.	APM type-VS50 with 50 g explosive buried at 10 cm depth.	115
5.34.	APM type-PMN with 150 g explosive buried at 20 cm depth.	115
5.35.	ATM type- T-80 with 2.5 kg buried at 30 cm depth.	116
5.36.	ATM type- T-71 with 6 kg buried at 30 cm depth.	116
5.37.	APMR scanned at stand-off = 5 cm.	117
5.38.	APMR scanned at stand-off = 10 cm.	118
5.39.	APMR scanned at stand-off = 20 cm.	118
5.40.	ATM type T-80 scanned at stand-off = 5 cm.	119
5.41.	ATM type T-80 scanned at stand-off = 10 cm.	120
5.42.	ATM type T-80 scanned at stand-off = 22 cm.	120
5.43.	The mine was buried at zero side distance. The measured mine position was approximately 200 cm.	121

5.44.	The mine was buried at 20 cm side distance. The measured mine position was approximately 200 cm.	122
5.45.	The mine was buried at 35 cm side distance. The measured mine position was approximately 200 cm.	122
5.46.	The mine was buried at 50 cm side distance. The measured mine position was approximately 200 cm.	123
5.47.	Side distance 15 cm and platform at the center. The measured mine position was approximately 130 cm.	124
5.48.	Side distance 15 cm with the platform shifted by 10 cm. The measured mine position was approximately 200 cm.	124
5.49.	Scan over normal background with a scan speed = 100 mm/s.	125
5.50.	Scan over 10 cm deep hollow with a scan speed = 100 mm/s.	126
5.51.	Scan over APM buried at the bottom of 10 cm deep hollow with a scan speed = 100 mm/s.	126
5.52.	Scan over APM buried at 10 cm below the bottom of 10 cm deep hollow with a scan speed = 100 mm/s.	127
5.53.	Scan over APM buried at 15 cm below the bottom of 10 cm deep hollow with a scan speed = 100 mm/s.	127
5.54.	Scan over 5 cm high sand heap with a scan speed = 100 mm/s.	128
5.55.	Scan over 10 cm high sand heap with a scan speed = 100 mm/s.	129
5.56.	Scan over 15 cm high sand heap with a scan speed = 100 mm/s .	129
5.57.	Scan over APM buried at the bottom of 15 cm high sand heap with a scan speed = 100 mm/s	130

Two ATMs buried at 20 cm depth. The measured mine 131

positions were approximately 150 and 260 cm.

5.58.