BIOREMEDIATION OF SOME AGRICULTURAL DRAINAGE WATER USING UNTRADITIONAL TECHNIQUES

By

MANAL MOHAMMED SAID MOHAMED ALI

B.Sc., Agric. Sci. (Genetics), Ain Shams Univ., 1997. M.Sc., Agric. Sci. (Genetics), Ain Shams Univ., 2002.

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN

Environmental Science

Department of Agricultural Science

Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

BIOREMEDIATION OF SOME AGRICULTURAL DRAINAGE WATER USING UNTRADITIONAL TECHNIQUES

By

MANAL MOHAMMED SAID MOHAMED ALI

BIOREMEDIATION OF SOME AGRICULTURAL DRAINAGE WATER USING UNTRADITIONAL TECHNIQUES

 $\mathbf{B}\mathbf{y}$

MANAL MOHAMMED SAID MOHAMED ALI

B.Sc. Agric. Sci. (Genetics), Ain Shames Univ., 1997. M.Sc., Agric. Sci. (Genetics), Ain Shams Univ., 2002.

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

Under supervision of:

Prof. Dr. Ali Z. Abdelsalam

Professor of genetic, Dean of Faculty of Biotechnology – Misr University

Prof. Dr. Zidan Hindy Abdel- Hamid

Professor of Pesticides Chemistry and Toxicology- Faculty of Agriculture - Ain Shams University

Prof. Dr. Adel M. G. Elmissery

Professor of Microbiology, Director of Molecular Biology Unite - Medical Research Center – Faculty of Medicine - Ain Shams University

Prof. Dr. Hesham Ibrahime El-Kassas

Professor of Soil & Water Environment and Vice Dean postgraduate Studies and Research- Institute of Environmental Studies And Research- Ain Shams University

ABSTRACT

Manal Mohammed Said Mohammed Ali, Bioremediation of Some Agricultural Drainage Water Using Biotechnological Techniques. Unpublished Ph.D. Thesis, Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University 2009.

In the present study, biodegradation of atrazin and 1.2- di-chloroethane using various bacteria strains isolated from specified contaminated area along the main drain in Qalubiya governorate was investigated. Wild bacteria were isolated from the collected water samples from different drain locations. Three strains of isolated bacteria were identified as type of Escherichia coli, Bacillus thurangesis, and Pseudomonas florescence using morphological characteristics. The efficiency of the isolated strains for the biodegradation of atrazin and dichloroethan (DCE) were evaluated. The biodegradation activities of the *Pseudomonas florescence* type isolated from water samples were found to be the most efficiency of atrazin degradation than other isolated strain from water samples. However, Escherichia coli type of isolated strains from water samples demonstrated an increase in the activity for degrading the DCE than those strains isolated from water samples. In an attempt to increase the effect of pesticide bioremediation by improved its efficiency via the addition of the DCE gene which in *Escherichia coli* to the higher strain for degradation of Atrazin which is Pseudomonas sp. The improvement was achieved by transformation between Pseudomonas sp. and Escherichia coli. The detection of DCE gene was achieved by using specific PCR primer. efficiency of the new strain (transformant strain) was measured at different pesticide concentrations. The transformant strain succeeded to degrade the two pesticides (atrazin and dichloroethan) with higher efficiency. Genetic fingerprinting was carried out at the molecular level by RAPD – PCR.

Key words: bioremediation – atrazin – dichloroethane - molecular level –bacterial strains – contamination area.

ACKNOWLEDAGEMENT

I wish to express my deep thanks to **Allah** Who Fulfilled my hopes and I promise to offer every possible and for any one in need to it.

Sincere and deep Thanks are due to **Prof. Dr. Ali Z. AbdelSalam** Professor of genetic, Director of Ain Shams Center of Genetic Engineering and Biotechnology – Faculty of Agriculture Branch - Ain Shams University. Dean of Faculty of Biotechnology – Misr University for this effective Valuable help kind encouragement

I am particularly grateful to **Prof. Dr. Zidan Hindy Abdel- Hamid** Professor of Pesticides Chemistry and Toxicology- Faculty of Agriculture - Ain Shams University, For kind supervision, his faithful encouragement and guidance during the Progress of this study until the preparative and Writing of the manuscript

I would like to express any deepest thanks and everlasting gratitude to **Prof. Dr. Adel M.G. Elmissery** Professor Of Microbiology, Director Of Molecular Biology Unit - Medical Research Center — Faculty of Medicine - Ain Shams University, for his Sincere helping fruitful advising and Faithful encouragement during The Progress.

My deepest gratitude is extending to **Prof. Dr. Hesham Ibrahime El-Kassas** Professor of Soil & Water Environment and Vice Dean Postgraduate Studies and Research- Institute of Environmental Studies and Research- Ain Shams University for his supervision and his Helpful suggestion and precious advices during the progress of this study.

I am grateful to all my collages in the medical research Center of (MRC) for sincere help as well as cordial support. And deep thanks to my best friend, collages and guide to my husband **Dr. Nabil Saeid Awad,** sincerely no word can explain my deep feeling of gratitude for his valuable suggestions and great support along this thesis.

CONTENTS

LIST OF TABLES LIST OF FIGURES	
LIST OF ABBREVIATIONS	
I- INTRODUCTION	1
II- REVIEW OF LITERATURE	3
Pesticide residues in environmental elements:	4
Pesticides residues in drinking and irrigation water	5
Exposure and Effects of 1,2- dichloroethane (DCE) on	11
human health and other biological systems	
Exposure and Effects of Atrazine on human health and	12
other biological systems	
Bioremediation of pesticides residues	13
Herbicide bioremediation approaches in water	15
Bioremediation of 1,2 Dichloroethane	17
Bioremediation of atrazin	25
Gene manipulation in bacteria	29
DNA transfer systems	30
Protoplast fusion	30
Transformation	31
Detection of genes by specific PCR	32
Genetic Fingerprinting	33
Molecular genetic level	33
Random amplified polymorphic DNA (RAPD)	34
16srRNA PCR-RFLP	35
III- MATERIALS AND METHODS	36
III.A. MATERIALS	36
First Part	36
Biological system	36

Bacterial strains	36
Xnobiotics	36
Chemicals	36
Media	37
Nutrient agar	38
Minimal salt medium(MSM)	38
Antibiotics	39
Buffers and Reagents	39
Phosphate buffer	40
Bromophenol blue	40
SET buffer	40
SL buffer (SET+Lysozyme)	40
TE buffer	40
Rnase	40
Lytic mix	41
KOAc solution	41
Other chemical	41
Agarose gel Electrophoresis	41
Run Buffer 1x TBE buffer	41
Gel loading buffer	41
Ethidium bromide	41
Reagent for molecular characterization:	41
Restriction enzyme analysis	41
III.B-METHODS	43
Method of collecting Water samples	43
Extraction and clean-up of pesticides from water samples	43
Clean up of water samples procedure	44
Isolation, identification and characterization of isolates in collected samples	45
Identification of isolates	45
Cultural characteristics	45

Physiological characteristics 4	5	
Purification and maintenance of microorganisms capable		
of degrading pesticide		
Bioremediation of atrazine herbicide 4	6	
Bioremediation experiments: 4	6	
Growth conditions of the isolated Bacterial 4	6	
Layout of experiment 4	6	
Sampling technique 4	7	
Determination of atrazine: 4	7	
Extraction and clean-up procedures 4	7	
Determination of atrazine 4	7	
Establishment of the standard calibration curve of atrazin		
4	7	
Remediation of Dichloroethane herbicide 4	7	
Bioremediation experiments 4	7	
Growth conditions of the isolated Bacterial 4	7	
Layout of experiment 4	8	
Determination of dichloroethane 4	8	
Extraction and clean-up procedures 4	8	
Establishment of the standard calibration curve of 4	8	
dichloroethane		
DNA TRANSFER SYSTEM: 4	19	
Transformation 4	.9	
DETECTION OF DHA GENE: 4	19	
Plate Assay 4	19	
Specific Polymerase Chain Reaction (PCR) 4	.9	
GENETIC FINGERPRINTING 5	0	
DNA Isolation 5	0	
RAPD ANALYSIS 5	0	
Isolation of the 16SrRNA gene via PCR 5	2	
<u> </u>	2	

V. RESULTS and DISCUSSION	53
A Physiochemical properties of water sample	
Bioremediation Studies	55
Isolation, identification of the bacterial isolates	56
Persistence bioremediation of atrazine in liquid culture of	56
Pseudomonas bacteria	
Persistence bioremediation of Dichloroethane in liquid	58
culture of <i>E.coli</i> bacteria	
Antibiotic Resistance Patterns	60
DNA transfer system	60
Transformation	60
Detection of dhA gene	61
Plate assay	61
Detection of the dhA gene by PCR	61
Bioremediation of atrazin in liquid culture of transformant	62
bacterium	
Bioremediation of Dichloroethane in liquid culture of	64
transformant bacterium	
Genetic fingerprinting	66
Molecular genetics level	66
RAPD – PCR profiles	66
Variable amplification by different primers	68
Primers UBC199	68
Primer UBC198	69
Primer UBC197	70
Timer obcier	71
Primer UBC196	, ,
Drive on LIDC4C0	72
Primer UBC160	
Primer UBC159	73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
90
91
92
97
99
100
103

LIST OF TABLES

		Page
Table (1):	List of chemicals used in the present study	36
Table (2):	The primers code, sequences and the percentage of the GC content	50
Table (3):	A physiochemical of prosperities of water at Qalubiya drain	54
Table (4):	Bioremediation of atrazine herbicide by the bacteria <i>pseudomonas sp.</i>	57
Table (5):	Bioremediation of 1-2,DCE herbicide by <i>E.coli</i>	59
Table (6):	Antibiotics resistance patterns in <i>pseudomons</i> : sp. (A) and E.coli (B)	60

Table (7):	Biodegradation of atrazin in liquid culture by transformant bacterium	63
Table (8):	Biodegradation of 1-2,DCE in liquid culture by transformant bacterium	65
Table (9):	Number of bands for each strain with twenty five different primers	67
Table (10):	The lowest and the highest number of bands produced by each primer/strains	68
Table (11):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC199 primer with three different bacterial strains:	69
Table (12):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC198 primer with three different bacterial strains:	70
Table (13):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC197	71

primer with three different bacterial strains:

Table (14):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC196 primer with three different bacterial strains:	72
Table (15):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC160 primer with three different bacterial strains:	73
Table (16):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC159 primer with three different bacterial strains:	74
Table (17):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC175 primer with three different bacterial strains:	75
Table (18):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC179 primer with three different bacterial strains:	76
Table (19):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC1180 primer with three different bacterial strains:	77
Table (20):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC183	78

primer with three different bacterial strains:

Table (21):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC186 primer with three different bacterial strains:	79
Table (22):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC188 primer with three different bacterial strains:	80
Table (23):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC104 primer with three different bacterial strains:	81
Table (24):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC107 primer with three different bacterial strains:	82
Table (25):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC114 primer with three different bacterial strains:	84
Table (26):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC143 primer with three different bacterial strains:	85
Table (27):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC156	86

primer with three different bacterial strains:

Table (28):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC125 primer with three different bacterial strains:	87
Table (29):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC127 primer with three different bacterial strains:	88
Table (30):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC135 primer with three different bacterial strains:	89
Table (31):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC116 primer with three different bacterial strains:	90
Table (32):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC117 primer with three different bacterial strains:	90
Table (33):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC173 primer with three different bacterial strains:	91
Table (34):	Molecular weight in base pairs of amplified DNA fragments that produced by UBC172 primer with three different bacterial strains:	92