UPDATES IN ROLE OF TRANSCRANIAL ULTRASOUND & DOPPLER IN EVALUATION OF VENTRICULOMEGALY IN NEONATES & INFANT

Essay Submitted for partial fulfillment of Msc degree

In

RADIODIAGNOSIS

BY

MAHMOUD SAMER MOHAMED EL.SISI

M.B.B.CH. SUPERVISIONS

Prof. Dr. SAFAA KAMAL MOHAMED

Professor of radiodiagnosis
Faculty of medicine
Ain shams university

Dr. IHAB MOHAMED RASSEM

Lecturer of radiodiagnosis
Faculty of medicine
Ain shams university

Ain shams university 2011

الجديد في فحص الموجات فوق الصوتية والدوبلر الملون في تقييم حالات اتساع بطينات المخ في حديثي الولاده والأطفال

رسالة مقدمة كجزء متمم للحصول على درجة الماجستير فى الأشعة التشخيصية

الطبيب/محمود سمير محمد السيسى بكالوريوس الطب والجراحة

تحت إشراف الأستاذة الدكتورة/ صفاء كمال محمد أستاذ الأشعة التشخيصية كلية الطب جامعة عين شمس

الدكتور/إيهاب محمد راسم مدرس الأشعة التشخيصية كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

UPDATES IN ROLE OF TRANSCRANIAL ULTRASOUND & DOPPLER IN EVALUATION OF VENTRICULOMEGALY IN NEONATES & INFANT

Essay Submitted for partial fulfillment of Msc degree

In

RADIODIAGNOSIS

BY

MAHMOUD SAMER MOHAMED EL.SISI

M.B.B.CH. SUPERVISIONS

Prof. Dr. SAFAA KAMAL MOHAMED

Professor of radiodiagnosis
Faculty of medicine
Ain shams university

Dr. IHAB MOHAMED RASSEM

Lecturer of radiodiagnosis
Faculty of medicine
Ain shams university

Ain shams university 2011

Abstract

Ventriculomegaly in the pediatric age group is a very common pathological entity. It could be secondary to increased cerebrospinal fluid pressure in the ventricular cavity (hydrocephalus), or to a lack of brain parenchyma due to (atrophic) involution or arrested development.

TCUS & TCD achieve a major advance in the study of neonatal brain, they are portable, safe, non invasive, of low cost and highly effective techniques that are of considerable value in evaluation of pediatric ventriculomegaly and should be included within an integrated approach to CNS imaging in the neonates.

Keywords

(Ventriculomegaly, TCUS, TCD, CSF, Atrophy, Hydrocephalus)

Acknowledgement

Praise is to **ALLAH**, who gave me the strength and knowledge to complete the present work.

Foremost, I wish to acknowledge my debt to **PROF DR.SAFAA KAMAL**, Professor of Radiology, Faculty of Medicine, Ain Shams
University, for his masterful teaching, guidance, and penetrating criticism.

This work owes much contribution to his genuine knowledge.

Thanks to *DR IHAB RASSEM*, lecturer of Radiology, Faculty of Medicine, Ain Shams University.

I should also express my deepest thanks to Dr. *Rania Abdelghany*Ahmed for here support not only for their creative ideas but also for their supreme effort which are clear in every part of this work.

At last, but definitely not least, I would like to thank my entire family; my father, mother, my brothers, my wife and my daughter NADA and my mother in low: for their support and encouragement. No dedication can match theirs

Table of Contents

Introduction & aim of work	1
Development of the ventricular system	4
Anatomy	11
A. Ventricular System B. Blood Supply of the Brain C. Choroid plexus and cerebrospinal fluid D. Subarachnoid space Pathology of Ventriculomegaly	32
Technical considerations of transcranial ultrasound and Doppler	45
Transcranial Ultrasound	63
Trans Cranial Doppler (TCD)	
Ultrasound anatomy of ventricular system	76
Role of Transcranial ultrasound and Doppler in evaluation of ventriculomegaly in neonates & infant.	98
Demonstrative Cases	128
Summary and Conclusion	141
References Arabic Summary	148

List of tables

Table 1: Spectral analysis of cerebral arteries (P 49)	
Table 2: Grading systems used for ventricular dilatation	
(P 70)	

List of figures

Fig 1: Diagram of the various stages of the brain development	P5
Fig 2 : Schematic illustration of the 3 vesicle stage brain, Week 4, dorsal	P6
view	
Fig 3: Schematic illustration of the 3 vesicle stage brain, Week 4, lateral	P6
view	
Fig 4: 5 vesicle stage, week 5, dorsal view	<i>P7</i>
Fig 5: 5 vesicle stage, Week 6	P8
Fig 6: Various stages of ventricular system development	P9
Fig 7: Diagrammatic sketch of the brain vesicles indicating the adult	P9
derivatives Of their walls and cavities	
Fig 8: Embryological development of the choroid plexus (in red)	P10
Fig 9: Projection of the ventricles on to the left surface of the brain	P11
Fig 10: Cast of the ventricular system viewed from above	P12
Fig11: Horizontal section of the cerebrum dissected to remove the roofs	P14
of the lateral ventricles)	
Fig12: Median hemi-section of the brain to show the relationship of the	P15
third and fourth ventricles. The pia mater is indicated in red and	
the ependymal in blue	
Fig 13: Sagittal section of the brainstem and the cerebellum close to the	P16
median plane. A median aperture below the tela choroidea	
allows drainage from the fourth ventricle into the	
cerebellomedullary cistern	
Fig 14: The rhomboid fossa or 'floor' of the fourth ventricle	P17
Fig 15: The cervical and intracranial course of the internal carotid artery	P18
Fig 16: Subdivisions of the internal carotid artery siphon	P19
Fig 17: Basilar artery and its branches	P20
Fig 18: Diagram of the arteries at the base of the brain, showing the	P21
constitution of the arterial circle (Circle of Willis)	
Fig 19: Anterior cerebral artery (coronal plane)	P22
Fig 20: Middle cerebral artery and its branches	P23
Fig 21: Posterior cerebral artery in (sagittal plane)	P24
Fig 22: Venous drainge of the brain	P25
Fig 23: Venous sinus of the brain	P26
Fig 24: Diagram of a coronal section through the inferior cornu of the	P28
lateral ventricle. The pia mater is shown in red and the	
ependyma in blue	
Fig 25: The positions of the principal subarachnoid cisterns. Red = pia	P31
mater, Blue =arachnoid mater	

Fig 26: Gross pathological specimens. Longstanding hydrocephalus	P33
Fig 27: Child with setting sun sign due to hydrocephalus	P35
Fig 28: Sites of obstruction in the CSF pathway:	P37
Fig 29 : Well-fitting ultrasound probe, positioned onto the anterior fontanelle. Arrow indicates the marker on the probe	P47
Fig 30: Standard six coronal planes	P48
Fig 31 : a. First coronal plane (C1) at the level of the frontal lobes b. Ultrasound Scan of the first coronal plane	P49
Fig 32 : a. Second coronal plane (C2) at the level of the frontal horns of the Lateral ventricles. b. Ultrasound scan of the second coronal plane	P49
Fig 33: a. Third coronal plane (C3) at the level of the foramen of Monro and the Third ventricle. b. Ultrasound scan of the third coronal plane	P50
Fig 34 : a. Fourth coronal plane (C4) at the level of the bodies of the lateral ventricles. b. Ultrasound scan of the fourth coronal plane	P51
Fig 35 : a. Fifth coronal plane (C5) at the level of the trigone of the lateral ventricles. b. Ultrasound scan of the fifth coronal plane	P51
Fig 36 : a. Sixth coronal plane (C6) through the parieto-occipital lobes. b. Ultrasound scan of the sixth coronal plane	P52
Fig 37: Standard five sagittal planes	P52
Fig 38: Positioning to obtain sagittal planes (arrow indicates marker)	P53
Fig 39 : a. Midsagittal plane (S3) through the third and fourth ventricles. b. Ultrasound scans of the midsagittal plane	P53
Fig 40 : a. Second and fourth parasagittal planes (S2, S4) through the right and left lateral ventricles. b. Ultrasound scan of the fourth parasagittal planes	P54
Fig 41: a. First and fifth parasagittal planes (S1, S5) through the insulae (right and left). b. Ultrasound scan of the first parasagittal planes	P55
Fig 42: AF anterior fontanel, PF posterior fontanel, TW temporal window, MF mastoid (or postero lateral) fontanel	P55
Fig 43: Probe positioning to obtain a coronal view, using the posterior fontanel as an acoustic window (arrow indicates marker)	P56
Fig 44: a. Coronal view, using the posterior fontanel as an acoustic window b. Ultrasound scan of the coronal view, using the posterior fontanel as an acoustic window	P56
Fig 45: Probe positioning to obtain a sagittal view, using the posterior fontanel as an acoustic window	P57

Fig 46: a. Parasagittal view, using the posterior fontanel as an acoustic	P57
window. b .Ultrasound scan of parasagittal view through the	
right lateral ventricle using the posterior fontanel as an acoustic	
window	
Fig 47: Probe positioning to obtain a transverse view, using the left	P58
temporal window	
Fig 48 : a. Transverse view using the left temporal window. b.	P58
Ultrasound scan of the transverse view through the upper	
cerebellum and mesencephalon using the temporal window	
Fig49: a. Lower transverse view using the left temporal window. b.	P59
Ultrasound scan of a lower transverse view through cerebellum	
and upper pons, using the temporal window	
Fig 50: Probe positioning to obtain a coronal view, using the left mastoid	P59
fontanel as an acoustic window	
Fig 51: a. Coronal view using the mastoid fontanel as an acoustic	P60
window. b. Ultrasound scan of coronal view through the	
cerebellum, using the left mastoid fontanel as an acoustic	
window	DCO
Fig 52: Probe positioning to obtain a transverse view, using the left	P60
mastoid fontanel as an acoustic window	D(1
Fig 53: a. Transverse view using the mastoid fontanel as an acoustic	P61
window. b. Ultrasound scan of transverse view through	
cerebellum and pons, using the mastoid fontanel as an acoustic window	
Fig 54: Coarctation of the ventricles	P62
Fig 55: Coronal sonogram through superior sagittal sinus showing its	P66
colour Doppler and wave form	P00
Fig 56: Sagittal midline sonogram shows internal cerebral vein	
Fig 57: Sagittal sonogram just lateral of midline shows basal vein of	P67
Rosenthal	1 07
Fig 58: Coronal sonogram at the level of basal ganglia shows paired	P67
terminal veins	
Fig 59: Midline sagittal sonogram	P69
Fig 60: Midline sagittal view showing ACA and its wave form	P70
Fig 61: Midline sagittal sonogram showing ACA and its branches	P70
Fig 62: Coronal sonogram through Circle of Willis	P71
Fig 63: First coronal view	P77
Fig 64: Second coronal plane	P79
Fig 65: Third coronal plane	P81
Fig 66: Fourth coronal plane	P82
Fig 67: Fifth coronal plane	P83

Fig 68: Sixth coronal plane	
F: (0 C) : 1 : : : : : : : : : : : : : : : : :	P84
8 6 6	P85
8 1 5 5	P88
8 1 5 5	P89
S 1	P90
Ü	P90
8	P91
8 0	P92
8 1 6	P92
8 1 5	P93
Fig 78: US image through mastoid fontanel	P94
Fig 79 : US image of the midbrain through mastoid fontanelle	P95
8 6	P96
Fig 81: The circle of Willis is clearly visible in the suprasellar cistern	P97
Fig 82: Sagittal midline view through foramen magnum	P97
Fig 83: Coronal US scan of the brain showing measure-ment of width of	P100
both anterior horns of lateral ven-tricles (AHW).	
Fig 84: Parasagittal US scan of the brain showing mea-surement of the	P101
thalamo-occipital distance. TH: thal-amus, C: choroid plexus, OH:	
occipital horn.	
Fig 85: (A, B) Chiari II malformation	P106
Fig 86: Coronal neurosonogram demonstrates inferior pointing of	P107
anterior horns of lateral ventricle	
Fig 87: Sagittal mid line neurosonogram and corresponding MRI	P107
showing partial agenesis of corpus callosum	
Fig 88: Axial neurosonogram through temporal bone showing absent	P108
septum pellucidum	
Fig 89: (A), (B) Coronal and Sagittal views showing the characteristic	P109
findings of the Dandy-Walker syndrome	
Fig 90: Coronal neurosonogram. Small nondilated frontal horns (arrow)	P110
are separated by a large, high-ridging third ventricle	
Fig 91: (A) In the normal newborn the pericallosal artery remains close	P111
to the surface of corpus callosum. (B) In callosal agenesis the	
pericallosa artery far from the ventricle	
Fig 92: Midline neroson-ogram. Grayscale ultrasound showing a	P112
sonolucent Posterior third ventricular mass	
	P112
	P113
only Minimal changes in hight based on respiration	
	P114

Fig 96 : Coronal plane at level of frontal horn showing a communicating	P115
left frontal sonolucent porencephalic cyst	
Fig 97: Sagittal view. IVH the clot form a cast of the lateral ventricle	P116
Fig 98: (A-F). Grade III IVH with small subarachnoid hemorrhage in a	P116
26-week-old infant	
Fig 99: left grade IV hemorrhage. Coronal view	P119
Fig 100: Hemorrhage. Coronal and sagittal views	P119
Fig 101: Coronal and Sagittal sonogram, ventriculoperitoneal shunt	P121
catheter demonstrate the characteristic parallel, linear	
echogenicity	
Fig 102: Coronal sonogram through anterior fontanelle semilobar	P125
holoprosencephaly, partial fusion of thalami	
Fig 103: Coronal view shows thalamic fusion and monoventricle	P125
Fig 104: First demonstrative case the diagnosis was intraventricular	P128
hemorrhage	
Fig 105: Case 2 the diagnosis was germinal matrix hemorrhage	P130
Fig 106: Case 3 the diagnosis was severe intraventricular hemorrhage	P131
with hydrocephalus	
Fig 107: Case 4 the diagnosis was Periventricular leukomalacia	P133
Fig 108: Case 5 the diagnosis was Aneurysm of the vein of Galen	P134
Fig 109: Case 6 the diagnosis was Agenesis of the corpus callosum	P136
Fig 110: Case 7 the diagnosis was Severe obstructive hydrocephalus due	P137
to aqueductal stenosis)	
Fig 111: Case 8 the diagnosis was Holoprosencephaly spectrum disorder	P138
in a newborn.	
Fig 112: Case 9 the diagnosis was progressive ventricular hydrocephalus.	P140

List of abbreviations

- ACA: Anterior Cerebral Artery
- ACC: Agenesis of the Corpus Callosum and intraventricular haemorrhage
- ACoA: Anterior communicating artery
- **AF**: Anterior fontanelle
- AVM: Arteriovenous malformation
- **BVD**: Biventricular distance
- **CBFV**: Cerebral Blood Flow Velocity
- CDI: Color Doppler Imaging
- CMV: Cytomegalovirus
- CNS GCTs: Central nervous system germ cell tumours
- **CPA**: Cerebellopontine angle
- CSF: Cerebro Spinal Fluid
- CSP: Cavum septum pellucidum
- CT: Computerized tomography
- CUS: Cranial ultrasonography
- **ECMO**: Extracorporeal membrane oxygenation
- EDV: End diastolic velocity
- **FM**: Foramen magnum
- GA: Gestational Age
- GCAs: Giant cell astrocytomas
- **GM**: Germinal Matrix
- GM/IVH: Germinal matrix or periventricular haemorrhage
- HC: Hydrocephalus
- HIV: Human immunodeficiency virus
- **HSV**: Herpes simplex virus

- **ICAs**: Internal Carotid Arteries
- **ICP**: Intracranial Pressure
- **IVH**: Inter Ventricular Haemorrhage
- LVR: Lateral ventricular ratio
- MRI: Magnetic resonance imaging
- **NF1**: Neurofibromatosis type 1
- **NICU**: Neonatal intensive care unit
- **NPH**: Normal pressure hydrocephalus
- **PCAs**: Posterior Cerebral Arteries
- **PCoAs**: posterior communicating arteries
- **PF**: Posterior fontanelle
- **PI**: Pulsatility index
- **PNET**: Primitive neuroectodermal tumours
- **PSV**: Peak systolic flow velocity
- **PVHI**: Periventricular haemorrhage infarction.
- PVL: Periventricular leukomalacia
- **RI**: Resistance index
- **RVR**: Relative vascular resistance
- SAS: Sub Arachnoid Space
- SENs: Subependymal nodules
- **SOD**: Septo-optic dysplasia
- TCD: Transcranial Doppler
- TCUS: Transcranial Ultrasound
- **TORCH**: Toxoplasmosis, rubella, cytomegalovirus
- **TS**: Tuberous sclerosis
- **US**: UltraSonographay
- VGAMs: Vein of Galen aneurismal malformations