Ain Shams University Faculty of Science Chemistry Department

Effect of some prepared superplasticizers on the rheology and setting time of the oil well cement slurries

A Thesis

Submitted to Department of Chemistry - Faculty of Science Ain Shams University

 $\mathbf{B}\mathbf{y}$

Samir Hosny Shafek Mahmoud

M.Sc. in Chemistry, Faculty of Science **Al-Azhar University** For the awarding of Ph.D Degree in Chemistry

Under Supervision of

Prof. Dr.

Prof. Dr.

Salah A. Abo-El-Enein

Ahmad M.A. Al-Sabbagh

Professor of Physical Chemistry (D.Sc.), Faculty of Science, Ain Shams University Professor of Applied Chemistry (D.Sc.), **Egyptian Petroleum Research Institute** (EPRI)

Prof. Dr.

Prof. Dr.

Abdel-Sattar Elgazwy

Ismail A.A. Aiad

Professor of Organic Chemistry, Faculty Professor of Applied Chemistry, Egyptian of Science, Ain Shams University

Petroleum Research Institute (EPRI)

Ain Shams University Faculty of Science Chemistry Department

Approval Sheet

Effect of some prepared superplasticizers on the rheology and setting time of the oil well cement slurries

Samir Hosny Shafek Mahmoud

M.Sc. in Chemistry, Faculty of Science Al-Azhar University

This thesis for Ph.D degree has been approved by:

Prof. Dr. Salah A. Abo-El-Enein (D.Sc.)

Professor of Physical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ahmad M. A. Al-Sabagh (D.Sc.)

Professor of Applied Chemistry, Egyptian Petroleum Research Institute (EPRI).

Prof. Dr. Atef M. A. Amer

Professor of Organic Chemistry, Faculty of Science, Zagazige University

Prof. Dr. Tarek A. Osman

Professor of Cement Technology and Building materials, Housing and Building National Research Center

Head of Chemistry Department Prof. Dr. Ibrahim H. A. Badr

Ain Shams University Faculty of Science Chemistry Department

Student Name: Samir Hosny Shafek Mahmoud

Scientific Degree: MSc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2002

Granting Year: 2009

Head of Chemistry Department Prof. Dr. Ibrahim H. A. Badr

Acknowledgement

First and foremost, I would like to thank Assam for giving me the opportunity and the strength to accomplish this work.

I would like to express my deeply heart thanks to **Egyptian Petroleum Research Institute** for introducing the scientific facilities to achieve this work.

I would like to express my deep gratitude to **Prof. Dr. Salah A. Abo- ET-Enein** Prof. of Physical Chemistry (D.Sc.), Faculty of Science, Ain Shams University. He was always kind enough to suggest the topics of research and to follow up the progress of the work with keen interest; guidance and valuable criticism and whose efforts made this humble work a success.

I do appreciate the great support of **Prof. Dr. Himad M. A. Al-Sabagh**, Prof. of Applied Chemistry, Director of Egyptian Petroleum Research Institution (EPRI), for his suggestion of the topics of research and to follow up the progress of the work with keen interest; valuable advice and constructive criticism throughout the thesis.

I am deeply indebted to **Prof. Dr. Ismail Flod El Rahman Fliad**, Prof. of Applied Chemistry, Petrochemicals Department, Egyptian Petroleum Research Institution (EPRI), for his valuable assistance, guidance and continuous help during the progress of the work.

I am deeply indebted to, **Prof. Dr. Abdol-Sattar Elgazwy** (hope allah to forgive him) Prof. of Organic Chemistry, Faculty of Science, Ain Shams University, and his valuable contribution in the work.

Samir hosny shafek

Symbol	Description	
C₃S	Tricalcium silicate (Alite phase)	
β-C ₂ S	β – dicalcium silicate (Belite phase)	
C ₃ A	Tricalcium aluminate (Auminate phase)	
C ₄ AF	Tetracalcium aluminoferrite (Ferrite phase)	
HPC	High performance concrete	
OWC	Oil well cement	
SCM Supplementary cementitious material		
HSR	High sulphate-resistant	
MSR	Moderate sulphate resistant	
ОРС	Ordinary Portland cement	
НРС	High performance concrete	
XRD	X-ray diffraction	
FTIR	Fourier transform infrared	
DSC	Differential scanning calorimetry	
SEM	Scanning electron microscopy	
CSH	Calcium silicate hydrate	

ABBREVIATIONS

СН	Calcium hydroxide
cc	Calcium carbonate
C ₂ AH ₈ or C ₄ AH ₁₃	Calcium aluminate hydrate
C ₂ ASH ₈	Calcium aluminosilicate hydrate (gehlenite)
(C₃A.3CS̄.32H)	Calcium sulphoaluimonate hydrate (ettringite)
μ_{p}	Plastic viscosity
τ	Shear stress
$ au_0$	Yield stress
γ•	Shear rate

Abbreviations	i
	_
A. List of figures	vi-xi
B. List of tables	xii-xiii
Chapter 1: Introduction and object of investigation	
I. Introduction and object of investigation	1
I.A.1 Introduction	
I.A.2 Basic cementing process	4
I.A.3 Oil well cements	6
I.A.3.1 Classification of oil well cements	7
I.A.3.2 Other types of oil well cements	8
I.A.4 Admixtures for well cementing	11
I.A.4.1 Types of admixtures used in OWC slurries	11
I.A.4.2 Chemical admixtures	12
I.A.4.2.1 Water reducers / plasticizers / retarders	13
I.A.4.2.2 Superplasticizers	14
I.A.4.2.2.1 Chemistry of superplasticizers	14
I.A.4.2.2.2 Main types of superplasticizers	16
I.A.5 Density of OWC slurries	20
I.A.6 Setting time and thickening time of OWC slurries	22
I.A.7 Hydration of oil well cement	27
I.A.8 Mechanical properties of hydrated OWC slurry	27
I.A.9 Durability of hardened OWC slurries	29
I.A.9.1 Porosity and permeability	30
I.A.9.2 Shrinkage, expansion and dimensional stability	31
I.A.9.3 Corrosion and acid attack	33
I.A.9.4 Sulphate attack	35
I.A.9.5 Rheology of oil well cement slurries	35
I.A.10 CONCLUSIONS	39
I.B. Object of investigation	
Chapter II: Materials and experimental techniques	
II.A. Starting materials and preparation superplasticizers	
II.A.1 Cement	42

LIST OF CONTENTS	Page
II.A.2 Synthesis of Superplasticizers	42
II.A.2.1 Sulfanilic acid-cyclohexanone formaldehyde	42
II.A.2.2 Sulfanilic acid-acetone formaldehyde	42
IIA.2.3 Sulfanilic acid-cyclohexanone glyoxylic condensate	43
IIA.2.4 Sulfanilic acid-acetone glyoxylic condensate	43
IIA.2.5. Sulfanilic acid-melamine glyoxylic condensate	44
IIA.3. Preparation of the hardened cement pastes	44
IIA.3.1 Moulding	44
IIA.2.2. Curing	45
IIB. Methods of physicochemical measurements	45
IIB.1 Water of consistency and setting time	45
IIB.2. Rheological measurements	46
IIB.3 Compressive strength determination	47
IIB.2. Stopping of hydration	47
IIB.5 Kinetics of hydration	48
IIB.5.1 Determination of chemically combined water	48
IIB.5.2 Determination of the free lime content	48
IIB.6 Phase composition	48
IIB.6.1 X-ray diffraction analysis (XRD)	48
IIB.6.2 Differential scanning calorimetry (DSC)	49
IIB.7 Scanning electron microscopy (SEM)	49
Chapter III: Results and discussion	
IIIA. IR Spectrophotometric analysis	50
III.A. Synthesis and Characterization of the Superplasticizers Used	50
III.A.1 Synthesis of the superplasticizers used in this investigation	50
III.A.2 Characterization of the synthesized superplasticizers	54
IIIB. The water of Consistency and Setting time	57
IIIC. Hydration kinetics and mechanical properties	61
IIIC.1 Chemically combined water content (Wn, %)	65
III.C.2. Degree of Hydration (α)	72

LIST OF CONTENTS	
III.C.3 Gel/Space ratio	76
III.C.4. Compressive strength	83
III.D. Phase composition and microstructure of the formed hydrates of the admixed hardened OWC pastes	89
IIID.1 X-ray diffraction analysis (XRD)	89
IIID.2 Differential scanning calorimetry (DSC)	93
III.D.3 Morphology and microstructure	99
III.E Coupled Effects of Chemical Admixtures and Temperature on Rheological Properties of Oil Well Cement Slurries	106
III.E.1 Coupled effects of temperature and chemical admixtures on apparent viscosity	106
III.E.2 Coupled effects of temperature and chemical admixtures on yield stress	118
III.E.3 Coupled effects of temperature and chemical admixtures on plastic viscosity	121
Summary and conclusion	127
References	131

Arabic Summary

Figure Number	Figure caption	Page Number
Chapter I:	Introduction	
1	Schematic representation of a cemented well	6
2	Structural unit of a lignosulphonate molecule	19
3	Structural unit of a naphthalene sulfonate formaldehyde	20
4	Structural unit of a naphthalene sulfonate formaldehyde molecule	21
5	The chemical structure of PSF	21
6	The chemical structure of SSPF	22
7	Structural unit of a polycarboxylate (PC) molecule	22
8	Effect of NaCl on thickening time	25
9	Effect of time on (a) shear bond strength behavior, and (b) compressive strength behavior of Portland cement system containing 35% silica flour and 3% BWOC of neat magnesite at various temperature	28
	II: Results and discussion	
1	FT-IR spectrum of CFS	61
2	FT-IR spectrum of AFS	62
3	FT-IR spectrum of CGS	62
4	FT-IR spectrum of AGS	63
5	FT-IR spectrum of MGS	63
6a 	Water of consistency and setting time of admixed OWC pastes with different dosages of CFS superplasticizer	68
6b	Water of consistency and setting time of admixed OWC pastes with different dosages of AFS superplasticizer	68
6c	Water of consistency and setting time of admixed OWC pastes with different dosages of CGS superplasticizer	69
6d	Water of consistency and setting time of admixed OWC pastes with different dosages of AGS superplasticizer	69
6e	Water of consistency and setting time of admixed OWC pastes with different dosages of MGS superplasticizer	70
7	Chemically combined water content values of the cement	73
	pastes made by using different dosages of CFS at	

	various ages of hydration	
8	Chemically combined water content values of the cement pastes made by using different dosages of AFS at various ages of hydration	75
9	Chemically combined water content values of the cement pastes made by using different dosages of CGS at various ages of hydration	76
10	Chemically combined water content values of the cement pastes made by using different dosages of AGS at various ages of hydration	77
11	Chemically combined water content values of the cement pastes made by using different dosages of MGS at various ages of hydration	78
12	Gel/Space ratio values of the various hardened cement pastes made by using different dosages of CFS at various ages of hydration	82
13	Gel/Space ratio values of the various hardened cement pastes made by using different dosages of AFS at various ages of hydration	83
14	Gel/Space ratio values of the various hardened cement pastes made by using different dosages of CGS at various ages of hydration	84
15	Gel/Space ratio values of the various hardened cement pastes made by using different dosages of AGS at various ages of hydration	85
16	Gel/Space ratio values of the various hardened cement pastes made by using different dosages of MGS at various ages of hydration	86
17	Compressive strength values of the various cement pastes made by using different dosages of CFS at various ages of hydration	88
18	Compressive Strength values of the various cement pastes made by using different dosages of CFS at various ages of hydration	89
19	Compressive Strength values of the various cement pastes made by using different dosages of CGS at various ages of hydration	90
20	Compressive Strength values of the various cement pastes made by using different dosages of AGS at various ages of hydration	91
21	Compressive Strength values of the various cement pastes	92

	made by using different dosages of MGS at various	
	ages of hydration	
22	XRD patterns of the admixed hardened paste by 0.25%	94
	and 0.75% CFS polymer after different ages of	
	hydration	
23	XRD patterns of the admixed hardened paste by 0.25%	95
	and 0.75% AFS polymer after different ages of	
	hydration	
24	XRD patterns of the admixed hardened paste by 0.25%	95
	and 0.75% CGS polymer after different ages of	
	hydration	
25	XRD patterns of the admixed hardened paste by 0.25%	96
	and 0.75% AGS polymer after different ages of	
	hydration	
26	XRD patterns of the admixed hardened paste by 0.25%	96
	and 0.75% MGS polymer after different ages of	
	hydration	
27a	DSC patterns of the admixed hardened OWC paste	98
	with 0.25% CFS after different ages of hydration	
27b	DSC patterns of the admixed hardened OWC paste with	99
	1% CFS after different ages of hydration	
28a	DSC patterns of the admixed hardened OWC paste with	99
	0.25% AFS after different ages of hydration	
28b	DSC patterns of the admixed hardened OWC paste with	124
	1% AFS after different ages of hydration	
2 9a	DSC patterns of the admixed hardened OWC paste with	100
	0.25% CGS after different ages of hydration	
29b	DSC patterns of the admixed hardened OWC paste with	101
	1% CGS after different ages of hydration	
30a	DSC patterns of the admixed hardened OWC paste with	101
	0.25% AGS after different ages of hydration	
30b	DSC patterns of the admixed hardened OWC paste with	102
	1.00% AGS after different ages of hydration	
31	DSC patterns of the admixed hardened OWC paste with	102
	1% MGS after different ages of hydration	
32	Morphology and microstructure of the hardened neat	104
	OWC paste at 1 day of hydration	
33	Morphology and microstructure of the hardened neat	104
	OWC paste at 7 days of hydration	401
34	Morphology and microstructure of the hardened neat	104
	OWC paste at 90 days of hydration	4.5-
35	Morphology and microstructure of the hardened OWC	105

	paste made with 1% MGS at 1day of hydration	
36	Morphology and microstructure of the hardened OWC	106
	paste made with 1% MGS at 7 days of hydration	
37	Morphology and microstructure of the hardened OWC	106
	paste made with 1% MGS at 90 days of hydration	
38	Morphology and microstructure of the hardened OWC	107
	paste made with 1% CFS at 1day of hydration	
39	Morphology and microstructure of the hardened OWC	107
	paste made with 1% CFS at 7 days of hydration	
40	Morphology and microstructure of the hardened OWC	108
	paste made with 1% CFS at 90 days of hydration	
41	Morphology and microstructure of the hardened OWC	108
	paste made with 1% CGS at 1 day of hydration	
42	Morphology and microstructure of the hardened OWC	109
	paste made with 1% CGS at 7 days of hydration	
43	Morphology and microstructure of the hardened OWC	110
	paste made with 1% CGS at 90 days of hydration	
44	Apparent viscosity of oil well cement slurries at 25° C	111
	having different dosages of admixtures of CFS	
45	Apparent viscosity of oil well cement slurries at 45° C	112
	having different dosages of admixtures of CFS	
46	Apparent viscosity of oil well cement slurries at 65° C	112
	having different dosages of admixtures of CFS	
47	Apparent viscosity of oil well cement slurries at various	113
	temperatures and different dosages of admixtures	
	of CFS	
48	Apparent viscosity of oil well cement slurries at 25° C	113
10	having different dosages of admixtures of AFS	110
49	Apparent viscosity of oil well cement slurries at 45° C	114
	having different dosages of admixtures of AFS	
50	Apparent viscosity of oil well cement slurries at 65° C	114
30	having different dosages of admixtures of AFS	
51	Apparent viscosity of oil well cement slurries at various	115
01	temperatures and different dosages of admixtures	110
	of AFS	
52	Apparent viscosity of oil well cement slurries at 25° C	115
٥ ـ	having different dosages of admixtures of CGS	110
53	Apparent viscosity of oil well cement slurries 45° C	116
50	temperatures and different dosages of admixtures	110
	of CGS	
54	Apparent viscosity of oil well cement slurries 65° C	116
51	temperatures and different dosages of admixtures	110
	of CGS	