# Chemotherapy Induced Cognitive and Executive Impairment in Hematological Malignancies

#### Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

## Presented by Mohamed Gamal Mohamed Kotb MBBCH

Faculty of Medicine, Ain Shams University

#### Under Supervision of

#### **Prof. Abdel Rahman Abdel Hamid Soliman**

Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

#### Dr. Rasha Ibrahim Ibrahim

Assistant Professor of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

#### **Dr. Rasha Magdy Mohammed Said**

Lecturer of Internal Medicine and Clinical Hematology Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2017



سورة البقرة الآية: ٣٢

#### Acknowledgment

All praise are to **AUAH** and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Abdel Rahman**Abdel Hamid Soliman, Professor of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University for his encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to **Prof. Dr. Rasha Ibrahim Ibrahim**, Assistant Professor of Internal

Medicine and Clinical Hematology, Faculty of Medicine,

Ain Shams University, who freely gave her time, effort

and experience along with continuous guidance

throughout this work.

Many thanks for **Dr.** Rasha Magdy Mohammed Said, Lecturer of Internal Medicine and Clinical Hematology, Faculty of Medicine, Ain Shams University, for her sincere support.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohamed Gamal Mohamed Koth

## List of Contents

| Title                        | Page No. |
|------------------------------|----------|
| List of Tables               | 5        |
| List of Figures              | 8        |
| List of Abbreviations        | 10       |
| Introduction                 | 1        |
| Aim of the Work              | 4        |
| Review of Literature         |          |
| Hematological Malignancy     | 5        |
| Cognitive Function           | 68       |
| Chemotherapy Adverse Effects | 77       |
| Patients and Methods         | 105      |
| Results                      | 108      |
| Discussion                   | 130      |
| Summary and Conclusion       | 137      |
| Recommendations              | 139      |
| References                   | 140      |
| Arabic Summary               |          |

#### List of Tables

| Table No.                | Title Page                                                   | No. |
|--------------------------|--------------------------------------------------------------|-----|
| Toble (1):               | Immunonhonotyming of AMI Colle                               | 177 |
| Table (1):<br>Table (2): | Immunophenotyping of AML Cells2016 WHO classification of AML |     |
| Table (2):               | Cotswold Modification of Ann Arbor                           | 19  |
| Table (5).               | Staging System                                               | 40  |
| <b>Table (4):</b>        | Non-Hodgkin's lymphoma types                                 |     |
| <b>Table (5):</b>        | Ann Arbor staging classification for NHL                     |     |
| <b>Table (6):</b>        | Chemotherapeutic regimens for NHL                            |     |
| <b>Table (7):</b>        | Treatment options for cutaneous T-cell                       |     |
|                          | lymphoma by stage                                            | 57  |
| <b>Table (8):</b>        | Novel therapies for NHL                                      |     |
| <b>Table (9):</b>        | Common laboratory features of plasma                         |     |
|                          | cell dyscrasia                                               | 60  |
| <b>Table (10):</b>       | Multiple myeloma therapies                                   | 65  |
| <b>Table (11):</b>       | Durie-Salmon Staging System and                              |     |
|                          | International Staging System                                 |     |
| <b>Table (12):</b>       | Tests for cognitive impairment                               | 99  |
| <b>Table (13):</b>       | Showing descriptive data about the                           |     |
|                          | patients of the study.                                       | 108 |
| <b>Table (14):</b>       | Showing sex demonstration of the                             | 400 |
|                          | patients                                                     | 109 |
| <b>Table (15):</b>       | Showing the number of each individual                        | 110 |
| T 11 (10)                | disease diagnoses of our patients.                           | 110 |
| <b>Table (16):</b>       | Showing individual chemotherapy                              |     |
|                          | regimens received by patients included at                    | 111 |
| <b>Table (17):</b>       | the studyShowing the number of patients receiving            | 111 |
| 1 able (17):             | oral and others receiving parenteral                         |     |
|                          | chemotherapy                                                 | 112 |
| <b>Table (18):</b>       | Showing the number patients associated                       | 112 |
| 14010 (10)               | with each comorbidity                                        | 113 |
| <b>Table (19):</b>       | Remission status of all patients 6 month                     | 110 |
| = 3,010 (10)             | post chemotherapy at our study                               | 114 |

## List of Tables (Cont...)

| Table No.          | Title                                                                                                                                                                                          | Page                             | No. |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|
| <b>Table (20):</b> | Showing Montreal test results amor patients                                                                                                                                                    | _                                | 115 |
| <b>Table (21):</b> | Showing descriptive data about individual component of Montreal te                                                                                                                             | each                             |     |
| Table (22):        | Describes Comparison between pa<br>with normal cognitive functions<br>patients with cognitive impairment<br>regards the age of the patients, num<br>chemotherapy cycles received, and patients | and as ber of period             |     |
| <b>Table (23):</b> | Describes Comparison between male female patients as regards                                                                                                                                   | e and<br>each                    |     |
| <b>Table</b> (24): | component of Montreal scoring syste Describes Comparison between rou chemotherapy administration of patients included at the study as re each component of Montreal so system                  | tes of<br>the<br>gards<br>coring |     |
| Table (25):        | Describes the comparison bet patients with disease comorbidities patients without comorbidities as reeach component of Montreal so                                                             | tween s and gards coring         |     |
| Table (26):        | system  Describes the comparison bet patients outcome 6 month chemotherapy as regards each composit Montreel seering system                                                                    | tween<br>post<br>onent           |     |
| <b>Table (27):</b> | of Montreal scoring system  Describes the comparison of differen of malignancy of the patients include the study as regards component                                                          | t type<br>led at<br>nt of        |     |
|                    | Montreal scoring system                                                                                                                                                                        |                                  | 122 |

## List of Tables (Cont...)

| Table No.   | Title                                                                                                                                                                                                                                                         | Page No.                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Table (28): | Describes comparison between different protocols of chemotherapy received patients included at the study as reeach component of Montreal system                                                                                                               | by the<br>egards<br>coring          |
| Table (29): | Describes the correlation of demog data, nature of disorder, comorbidities, chemotherapy recruite of administration, and followersults after 6 months as well as any chemotherapy induced organ toxicithe patients included in study with Montreal test score | some ceived, ow up other ty for the |
| Table (30): | Describes the correlation of the age patients, number of chemotherapy received, and period of hospital adm of the patients included at the study each component of Montreal s system                                                                          | of the cycles ission y with coring  |

## List of Figures

| Fig. No.           | Title                                                                                        | Page No.      |
|--------------------|----------------------------------------------------------------------------------------------|---------------|
| Figure (1):        | Diagnostic workup of a patient with B-cell acute lymphoblastic leuke                         | emia          |
| Figure (2):        | Peripheral smear from a patient                                                              | with          |
| Figure (3):        | chronic lymphocytic leukemia                                                                 | ition         |
| Figure (4):        | lineage, including an eosinophil ar<br>basophil seen at CML                                  | nd a<br>31    |
| rigure (1).        | lymphoma Reed-Sternberg cells large, abnormal lymphocytes that contain more than one nucleus | are<br>may    |
| Figure (5):        | Shows the treatment strate advocated for early-stage Hodge                                   | egies<br>gkin |
| Figure (6):        | lymphoma based on current clinical of A diagram of B-cell ontogeny lymphomagenesis           | and           |
| <b>Figure (7):</b> | Showing sex differentiation an                                                               | •             |
| Figure (8):        | patients included at our study                                                               | each          |
| Figure (9):        | populations.  Demonstrating the percentage of chemotherapy regimen received by               | each          |
| Figure (10):       | patients  Demonstrating the percentage difference as regards route of administration         | ence          |
| Figure (11):       | Reveals the percentages of patients comorbidities among all of our states.                   | had           |
|                    | nationts                                                                                     | 113           |

## List of Figures (Cont...)

| Fig. No.            | Title                              | Page No. |
|---------------------|------------------------------------|----------|
| <b>Figure (12):</b> | Demonstrating percentage of patie  | ents     |
| _                   | follow up results after 6 month    | of       |
|                     | chemotherapy                       | 114      |
| <b>Figure (13):</b> | Demonstrates cognitive function am | ong      |
|                     | our patients after Montreal        | test     |
|                     | assessment                         | 115      |

#### List of Abbreviations

| Abb. | Full term                                  |
|------|--------------------------------------------|
| 5-FU | 5-fluorouracil                             |
|      | Acute lymphoblastic leukemia               |
|      | Acute myelogenous leukemia                 |
|      | Absolute neutrophil counts                 |
|      | Acute promyelocytic leukemia               |
|      | All-trans retinoic acid                    |
|      | Bone marrow transplantation                |
|      | Cancer And Leukemia Group B                |
|      | Complete blood count                       |
|      | Chemotherapy induced cognitive impairment  |
|      | Chemotherapy induced nausea and vomiting   |
|      | Chemotherapy induced peripheral neuropathy |
|      | Chronic lymphocytic leukemia               |
|      | Chronic myelocytic leukemia                |
|      | Central nervous system                     |
|      | Complete remission                         |
|      | Cerebrospinal fluid                        |
|      | Computed tomography                        |
|      | Chemotherapy                               |
| DIC  | Disseminated intravascular coagulation     |
|      | Epstein-Barr virus                         |
|      | Eastern Cooperative Oncology Group         |
|      | Eryth ropoiet in                           |
|      | Erythrocyte sedimentation rate             |
|      | Food and Drug Administration               |
|      | Fluorodeoxyglucose-positron emission       |
|      | tomography                                 |
| FISH | Fluorescence in situ hybridization         |
|      | Gastrointestinal                           |

#### List of Abbreviations (cont...)

| Abb.          | Full term                                |
|---------------|------------------------------------------|
|               |                                          |
| <i>HBV</i>    | Hepatitis B virus                        |
| HCT           | Hematopoietic stem cell transplantation  |
| <i>HCV</i>    | Hepatitis C virus                        |
| HIV           | Human immunodeficiency virus             |
| <i>HL</i>     | Hodgkin's Lymphoma                       |
| <i>HLA</i>    | Human leukocyte antigen                  |
| <i>IL</i>     | Interleukin                              |
| <i>LBCL</i>   | Large B cell lymphoma                    |
| <i>LDH</i>    | Lactate dehydrogenase enzyme             |
| <i>MCHL</i>   | Mixed-cellularity Hodgkin's lymphoma     |
| <i>MDS</i>    | Myelodysplastic syndrome                 |
| <i>MM</i>     | Multiple myeloma                         |
| <i>MRD</i>    | Minimal residual disease                 |
| <i>MRI</i>    | Magnetic resonance imaging               |
| <i>MUGA</i>   | Multiple gated acquisition               |
| <i>MZL</i>    | Marginal zone lymphoma                   |
| <i>NCCN</i>   | National Comprehensive Cancer Network    |
| <i>NHL</i>    | Non-Hodgkin's Lymphoma                   |
| <i>NHL</i>    | Non-Hodgkin's lymphoma                   |
| NLPHL         | Nodular lymphocyte predominant Hodgkin's |
|               | disease                                  |
| <i>NSHL</i>   | Non sclerosing Hodgkin's lymphoma        |
| <i>OS</i>     | Overall survival                         |
| <i>PCR</i>    | Polymerase chain reaction                |
| <i>PET</i>    | Positron Emission Tomography             |
| Ph            | Philadelphia                             |
| <i>RT-PCR</i> | Reverse transcriptase polymerase chain   |
|               | reaction                                 |

## List of Abbreviations (cont...)

| Abb.        | Full term                                    |
|-------------|----------------------------------------------|
|             |                                              |
| S1P         | Sphingosine-1-phosphate                      |
| <i>SLE</i>  | Systemic lupus erythematosus                 |
| <i>SLL</i>  | Small lymphocytic lymphoma                   |
| <i>SWOG</i> | Southwest Oncology Group                     |
| THRLBCL     | T-cell histiocyte-rich large B-cell lymphoma |
| TKIs        | Tyrosine kinase inhibitors                   |
| <i>TNF</i>  | Tumor necrosis factor                        |
| <i>TTF</i>  | Time to treatment failure                    |
| <i>WBC</i>  | White blood cell count                       |
| <i>WHO</i>  | World Health Organization                    |

#### Introduction

In 2015, an estimated 162, 000 new cases of hematological malignancies were diagnosed (approximately 10% of all cancer diagnoses) and over 1.8 million haematological cancer survivors live in the United States (*Howlader et al.*, 2014).

Improved diagnosis and treatment have markedly increased survival for many patients with haematological malignancies. Based on the most recent literature, current 5-year survival rates are as follows: all leukaemia 60.3%, Hodgkin lymphoma (HL) 87.7% and non-HL (NHL) 71.4% (Howlader et al., 2014).

Nearly all leukaemias and 69% of NHL are treated with chemotherapeutic agents (*Rossi et al., 2015*).

Treatment-related side effects, including cognitive impairment, can decrease treatment compliance and ultimately impact quality of life; however, a deep understanding of the etiology of these cognitive problems as a consequence of disease and/or treatment in hematological malignancies is still in its infancy (Wefel et al., 2004).

Chemotherapy-induced cognitive impairment (CICI) is a collection of problems in memory, attention, concentration and executive functions that is associated with chemotherapy treatments in cancer patients. These problems can range from

subtle to severe and last for months or years after treatment (Bradley et al., 2005).

CRCI affects an estimated 10 million cancer survivors in the United States. Based on data from all types of cancers, up to 30% of survivors experience cognitive impairment prior to therapy, 80% during therapy, and up to 35% may live with CRCI up to 20 years after treatment (Koppelmans et al., 2012).

Decreased cognitive function is associated with poorer quality of life, inability to achieve work and educational goals, inability to drive or read, and decreased social connectedness (Reid-Arndt et al., 2010).

To date, the CICI literature is dominated by breast cancer and other solid tumours. Haematological malignancies are usually systemic, and often treated with chemotherapeutic agents that have been implicated in CICI in solid tumours. The growing literature in this area suggests that cognition is an important predictor of survival in patients with haematological malignancies and therefore, understanding factors that lead to CICI in haematological malignancies warrants attention (Dubruille et al., 2015).

Research on cognitive function in most types of haematological malignancies is limited. However, studies of cognitive function in paediatric acute lymphoblastic leukaemia (ALL), indicate that cognitive impairment can persist for years after completion of treatment. Clearly, a subset of hematological malignancy survivors experience CICI (Elisabeth et al., 2009).

A study done 2005 on Acute Myeloid Leukemia (AML) and Myelodysplastic syndrome (MDS) patients had revealed Decline on motor function, psychomotor speed, memory, executive function post chemotherapy (Meyers et al., 2005).

Another study done at 2012 on Hodgkin lymphoma patients revealed worse than controls on attention, memory, executive function, processing speed post chemotherapy (*Krull et al.*, 2012).