

#### AIN SHAMS UNIVERSITY FACULTY OF SCIENCE GEOLOGY DEPARTMENT

## Genesis and Potentiality of Radioactive Minerals and Rare Metals in the Adediya Formation, Southwestern Sinai, Egypt

### By **Marwa Medhat Abdel- Azeem**

B. Sc. in Geology, Benha University (2006)

M. Sc. in Geology, Helwan University (2011)

Assistant Lecturer, the Nuclear Materials Authority

A thesis submitted to the Department of Geology, Faculty of Science, Ain Shams University

For the award of the Philosophy Degree (Ph.D.) in Science "Geology"

#### **APPROVAL SHEET**

#### Title of the Ph.D. Thesis

## Genesis and Potentiality of Radioactive Minerals and Rare Metals in the Adediya Formation, Southwestern Sinai, Egypt.

#### Candidate Name

#### Marwa Medhat Abdel- Azeem

#### Submitted to

The Department of Geology, Faculty of Science, Ain Shams
University

This thesis has been approved for submission by the supervisors:

#### Prof. Dr. Mohamed Mahmoud Abu-zeid

Professor of Mineralogy and Sedimentary petrology - Geology Department - Ain Shams University.

#### Prof. Dr. Ahmed Mohamed El-Kammar

Professor of Geochemistry - Geology Department - Cairo University.

#### Prof. Dr. Ibrahim El Kattany El-Aassy

Professor of Uranium Geology - Nuclear Materials Authority.

#### Dr. Gehan Aly Mohammed Aly

Assistant. Professor of Economic Geology - Nuclear Materials Authority.

# DEDICATED TO

# THE SOUL OF MY DEAR MOTHER WHO I WILL NEVER FORGET

TO

MY FATHER,

MY HUSBAND MOHAMED
AND

MY LOVELY SONS

ZEYAD & YUSIF

(2014)

#### ACKNOWLEDGEMENTS

# First of all, my deepest gratitude and unlimited thanks to Allah who gave me the power to complete this work

The author is greatly indebted to the Geology Department, Faculty of Science, Ain Shams University and the Nuclear Materials Authority (NMA) for providing facilities during the progress of this research work.

I wish to express my deep gratitude and unlimited appreciation to the supervisors of this thesis **Prof. Mohamed M. Abu-Zeid** (Geology Department, Ain Shams University), **Prof. Ahmed M. El Kammar** (Geology Department, Cairo University), **Prof. Ibrahim E. El Aassy** (the Nuclear Materials Authority) who suggest the point of research and **Dr. Gehan A. Aly** (the Nuclear Materials Authority). Their close supervision, sincere guidance, fruitful discussions, critical reviewing the entire manuscript, unlimited assistance and continuous encouragement were essential to complete this thesis.

Special thanks are also extended to the respected staff and technicians at the Nuclear Materials Authority Dr. Sami. K. Aita (internal supervisor), Prof. Momamed. E. Ibrahim, Prof. Joseph. Samman, Prof. Bataa H. Ali, Prof. Hesham Qadry, Prof. Abla Ragab, Dr. Magda Khalaf, Dr. Anas El Sherief, Dr. Ehab K. Abu Zeid, Dr. Azza El Wakeel, Dr. El-Sayed El- Sawey, Dr. Enas El Shikh, Dr. Hanaa A. Abu Khoziem, Mr. Karem Abdel Azeem and all my colleges at the Rock Studies Department. Their sincere help and support were of atmost value for the completion of this research work.

I am deeply grateful to Allah who made my husband Eng. Mohamed M. Abol Hasan and my sons the main part of my life. Their understanding, sincere help and continuous encouragement were essential for the accomplishment of this thesis which represents one of my life goals. Finally, I would like to express my unlimited thanks and gratitude to my father, brother and grandmothers.

#### Abstract

The uppermost part of the Adediya Formation (Cambro-Ordivician) exposed in southwestern Sinai represents a very interesting succession. It contains mineralizations which are exceptionally rich in radioactive and rare metals as well as heavy metals. In the present work, These mineralizations and their host rocks were subjected to comprehensive studies in order to determine their detailed geologic, petrographic, mineralogic, geochemical and radioactive characteristics as well as their genetic history and economic potential.

These studies comprised a detailed field work and several laboratory examinations and analyses which were carried out on the upper part of the Adediya Formation exposed in a number of stratigraphic sections distributed in a geographically wide area in southwestern Sinai.

The obtained results showed that the mineralizations exist in ferruginated clastic rocks and ironstone bodies. The former are represented by sandstones and, much less commonly, siltstones having a relatively wide range of textural characteristics. Also, their mineral assemblages consist of a large number of essential and accessory minerals including the radioactive and REE-bearing species. The study of these mineral constituents involved their classification, description and separation and identification of the heavy-mineral species. Also, the major, minor and trace element contents of the mineralizations and their host rocks were quantitively determined and the geochemical data were statistically treated. The inter-relationships of these elements were assessed applying binary and ternary diagrams and several calculated geochemical parameters. Sequential extractions were conducted to identify the modes of occurrence of the various elements. In addition, the chemical compositions of the host rocks were compared with those of a number of related reference rock types. This helped in the identification of the recorded minerals and their qualitative and quantitative lateral variations among the studied stratigraphic sections.

The results obtained in the present study were implemented to determine the genesis of the various mineral species which constitute the mineralizations as well as the sedimentary history of their host rocks. The latter involved the elucidation of their provenance including the nature of source rocks and the type and extent of the weathering processes as related to the paleoclimatic conditions in the source areas. Also, the nature of the transporting agents of transportation of the weathering products and the types and characteristics of the depositional environments were determined. In addition, the results obtained were used to identify the types and effects of the various diagenetic processes and a possible hydrothermal activity as well as their relative roles in determining the final mineral, chemical and radioactive characteristics of the mineralizations and their host rocks. These roles resulted in the post-depositional and redistribution of the various elements especially the radioactive and rare species during the epigenetic phase which involved the action of supergene processes. Based on the results obtained in this study, a genetic model for the studied mineralizations is proposed.

**Keywords**: Sinai, Cambro-Ordovician, Adediya Formation, sandstones, siltstones, ironstones, radioactive mineralizations, rare metals.

| Contents                                      | Page No. |
|-----------------------------------------------|----------|
| List of Figures                               | V        |
| List of Tables                                | ix       |
| CHAPTER ONE                                   |          |
| INTRODUCTION                                  |          |
| 1.1. General Statement                        | 1        |
| 1.2. Lithostratigraphy of Southwestern Sinai  | 2        |
| 1.2.1. The Lower Paleozoic                    | 2        |
| 1.2.2. The Upper Paleozoic                    | 6        |
| 1.3. Location of the Study Area               | 8        |
| 1.4. Previous Studies                         | 9        |
| 1.5. Scope and Objectives of the Present Work | 14       |
| CHAPTER TWO                                   |          |
| MATERIALS AND METHODOLOGY                     |          |
| 2.1. Field Works                              | 15       |
| 2.2. Laboratory Studies                       | 16       |
| 2.2.1. Microscopic examination                | 16       |
| 2.2.2. Heavy mineral study                    | 16       |
| 2.2.3. Geochemical Studies                    | 16       |
| 2.2.4. Radiometric Studies                    | 18       |
| 2.2.5. Autoradiography                        | 19       |
| CHAPTER THREE                                 |          |
| GEOLOGY AND LITHOSTRATIGRAPHY                 |          |
| 3.1. The G. Adediya - G. Um Hamad Area        | 22       |
| 3.2. The G. Homiyer - G. El Homierat Area     | 30       |
| CHAPTER FOUR                                  |          |
| PETROGRAPHY AND MINERALOGY                    |          |
| 4.1. Petrography                              | 40       |
| 4.1.1.Ferruginous pebbly sandstone            | 40       |
| 4.1.2.Ferruginous sandstone                   | 42       |
| 4.1.3. Sandstone                              | 45       |
| 4.1.4.Ferruginous siltstone                   | 46       |

| 4.1.5. Ironstone                                        |
|---------------------------------------------------------|
| 4.1.6. Bostonite                                        |
| 4.2. Mineralogy                                         |
| 4.2.1. The Radioactive minerals                         |
| (i) Uranium minerals                                    |
| (ii) Thorium minerals                                   |
| (iii) U, Th and REE -bearing accessory minerals         |
| 4.2.2. The Non-radioactive Minerals                     |
| (i) Silicate minerals                                   |
| (ii) Oxide and oxy-hydroxide minerals                   |
| (iii) Sulfide minerals                                  |
| (iv) Carbonate minerals                                 |
| (v) Native minerals                                     |
| 4.2.3. Base metals                                      |
| 1.2.5. Dase metals                                      |
| CHAPTER FIVE                                            |
| GEOCHEMISTRY                                            |
|                                                         |
| 5.1. Geochemistry of Clastic Rocks                      |
| 5.1.1. The major oxides                                 |
| (i) Sandstones                                          |
| (a) The G. Adediya - G. Um Hamad sandstones             |
| (b)The G. Homiyer - G. Homierat sandstone               |
| (ii) Siltstones                                         |
| 5.1.2. The trace elements                               |
| 5.1.3. Effects of sedimentary processes on geochemistry |
| 5.1.4. Source area weathering                           |
| 5.1.5. Paleoclimate and paleo-oxygenation conditions    |
| 5.2. Geochemistry of Ironstones                         |
| 5.2.1. The major oxides                                 |
| 5.2.2. The trace elements                               |
| 5.3. Geochemistry of Bostonites                         |
| 5.3.1. The major oxides                                 |
| 5.3.2. The trace elements                               |
| 5.4. Geochemical Comparison with Published Data         |
| 5.4.1. The sandstones                                   |
| 5.4.2. The ironstones                                   |
| 5.4.3. The bostonites                                   |
| 5.5. Statistical Treatment of geochemical data          |
| 5.5.1. Heavy metals specification                       |
| 5.5.2. Factor analysis of REE                           |
| 5.6. Geochemistry of the Isovalents                     |
| 5.7. Geochemistry of Rare Earth Elements (REE)          |
| - · · · · · · · · · · · · · · · · · · ·                 |

| 5.7.1. Petrogenitic significance of the REE in the clastic rocks |
|------------------------------------------------------------------|
| 5.7.2. Petrogenitic significance of the REE in the bostonites    |
| 5.8. Geochemistry of the Radioactive Elements                    |
| 5.9. Sequential Extraction of the Heavy Metals                   |
|                                                                  |
| CHAPTER SIX                                                      |
| RADIOELEMENTS DISTRIBUTION                                       |
| 6.1. General Statement 12                                        |
| 6.2. Units of Radioactivity                                      |
| 6.3. The Radioactive Elements.                                   |
| 6.4. Classification of Uranium Deposits 125                      |
| 6.5. Distribution of Radioelements in the Studied Rock Types     |
| 6.5.1. The clastic rocks                                         |
| 6.5.2. The Ironstones                                            |
| 6.5.3. The Bostonites                                            |
| 6.6. The Behavior of U and Th in the Studied Rock Types          |
| (A) The P-Factor                                                 |
| (i) The clastic rocks                                            |
| (ii) Ironstones                                                  |
| (iii) Bostonites                                                 |
| (B) The D-Factor 132                                             |
| 6.8. Uc versus Trace Elements 132                                |
| 6.9. Uranium Mobilization                                        |
| (i) Criteria of mobilization                                     |
| (ii)Types and amount of uranium mobilization                     |
| 6. 10. The Paleo-Oxygenation Conditions 136                      |
| 6. 11. Autoradiography                                           |
| CHAPTER SEVEN                                                    |
| GENESIS AND RADIOACTIVE POTENTIAL                                |
|                                                                  |
| 7.1. Genesis of Clastics 138                                     |
| 7.1.1. Provenance                                                |
| 7.1.2. Environments of deposition 140                            |
| 7.1.3. Diagenesis                                                |
| 7.2. Genesis of Ironstones 143                                   |
| 7.3. Alteration of Bostonites                                    |
| 7.4. Genesis of the Mineralizations 14                           |
| 7.5. Radioactive Potential of the Rocks                          |

# **CHAPTER EIGHT**

#### **SUMMARY AND CONCLUSIONS**

| 8.1. Aim and Methodology of the Study                       | 14  |
|-------------------------------------------------------------|-----|
| 8.2. Geology of the studied Area                            | 14′ |
| 8.3. Petrography                                            | 143 |
| 8.4. Mineralogy                                             | 149 |
| 8.5. Geochemistry and Radioactive Potential                 | 150 |
| 8.6. Genesis of the Adediya Clastic Rocks                   | 150 |
| 8.7. Diagenesis                                             | 15' |
| 8.8. Proposed Genetic Model for the Adediya Mineralizations | 159 |
| References                                                  | 16  |
| Arabic Summary                                              | 1   |

#### LIST OF FIGURES

|                                                                               | Page No |
|-------------------------------------------------------------------------------|---------|
| Fig. 1.1: Composite lithostratigraphic section of southwestern Sinai          |         |
| (reconstructed after Aita, 1996)                                              | 4       |
| Fig. 1.2: Location map of the studied area in southwestern Sinai              | 9       |
| Fig. 3.1: Geologic map of southwestern Sinai including the study area         |         |
| (compiled after Aita, 1996 and El Agami, 1996)                                | 21      |
| Fig. 3.2: Geologic map of G. Adediya – G. Um Hamad area (after Aita,          |         |
| 1996)                                                                         | 23      |
| Fig. 3.3: Google Earth images of G. Adediya and G. Um Hamad                   |         |
| showing the sampling sites                                                    | 24      |
| <b>Fig. 3.4:</b> Photograph of the northern face of G. Adediya showing the    |         |
| boundaries between the exposed rock units                                     | 25      |
| <b>Fig. 3.5:</b> Photograph showing the profound Khur between the Adediya     |         |
| East and the Adediya West mountains. The boundaries                           |         |
| between the rock units are outlined                                           | 25      |
| Fig. 3.6: Photograph showing the horizontal lamination displayed by the       |         |
| sandstone in the upper part of the Adediya Formation                          | 26      |
| <b>Fig. 3.7a:</b> Photograph showing the caves in the sandstone of the upper  |         |
| member of the Adediya Formation                                               | 26      |
| <b>Fig. 3.7b:</b> Photograph showing the bioturbation in the sandstone of the |         |
| upper member of the Adediya Formation                                         | 27      |
| Fig. 3.8: Photograph showing the wedge-shaped cross-lamination                |         |
| displayed by the sandstone in the upper part of the Adediya                   |         |
| Formation.                                                                    | 27      |
| Fig. 3.9: Photograph showing the exposures of the Adediya, Um Bogma           |         |
| and El Hashash formations at G.Um Hamad (looking south)                       | 28      |
| Fig. 3.10: Photograph showing the profound fault zone at G. Um Hamad          | 28      |
| <b>Fig. 3.11:</b> Location and geologic maps of the G. Homiyer - G. Homierat  |         |
| area (modified after Shata et al., 2011)                                      | 31      |
| Fig. 3.12a: Photograph showing a bostonite sill separating the Adediya        |         |
| and the El Hashash formations in G. Homierat                                  | 32      |
| Fig. 3.12b: Photograph showing the thermal effect of the bostonite sill       |         |
| on the sandstone of the Adediya Formation at G. Homierat                      | 32      |
| Fig. 3.13: Photograph showing a pebbly sandstone bed constituting the         |         |
| top of the Adediya Formation at G. Homierat                                   | 33      |
| <b>Fig. 3.14:</b> Landsat images of G. Homierat - G. Homiyer area showing     |         |
| the locations of the collected samples                                        | 34      |
| Fig. 3.15: Photograph showing the topmost part of the Adediya                 |         |
| Formation at G. Homeyir area                                                  | 35      |
| Fig. 3.16: Photograph showing iron-manganese concretions in the               |         |
| Adediya sandstone at G. Homeyir area                                          | 35      |
| <b>Fig. 3.17:</b> Photograph of the sandstone at the top of the Adediya       |         |
| Formation in G. Homierat showing (A) wedge-shaped cross-                      |         |
| lamination, (B) tabular cross-stratification                                  | 37      |
| , ( )                                                                         |         |

| <b>Fig. 3.18:</b> Photograph of the sandstones constituting the topmost part of                                              |
|------------------------------------------------------------------------------------------------------------------------------|
| the Adediya Formation in G. Homierat showing fine pebbles                                                                    |
| at the cosets of the cross beds                                                                                              |
| Fig. 3.19: Lithostratigraphic correlation of the studied sections                                                            |
| Fig. 4.1: Photomicrographs of the ferruginous pebbly sandstones                                                              |
| Fig. 4.1 (cont.): Photomicrographs of the ferruginous pebbly sandstones                                                      |
| Fig. 4.2: Photomicrographs of the ferruginous sandstones                                                                     |
| Fig. 4.3: Photomicrographs of the ferruginous sandstones                                                                     |
| Fig. 4.4: Photomicrographs of the sandstones                                                                                 |
| Fig. 4.5: Photomicrographs of the ferruginous siltstones                                                                     |
| Fig. 4.6: Photomicrographs of the bostonite rocks                                                                            |
| Fig. 4.7a: (a&b) BSE images and EDX patterns of two aggregates of                                                            |
| uranium oxide, and (c) X – ray diffraction pattern of                                                                        |
| uranium oxide                                                                                                                |
| Fig. 4.7b: (a&b) BSE images and EDX patterns of two aggregates of                                                            |
| beta-uranophane, and (c) $X$ – ray diffraction pattern and                                                                   |
| photomicrograph of beta-uranophane                                                                                           |
| Fig. 4.8: BSE image and EDX pattern of thorianite                                                                            |
| Fig. 4.9: BSE images and EDX patterns of (a) an euhedral, angular                                                            |
| zircon crystal, and (b) an anhedral, subrounded zircon grain                                                                 |
| Fig. 4.10: BSE image and EDX pattern of xenotime                                                                             |
| Fig. 4.11: BSE image and EDX pattern of fergusonite                                                                          |
| Fig. 4.12: (a&b) X – ray diffraction pattern and photomicrograph of                                                          |
| fluorite crystals                                                                                                            |
| Fig. 4.13: (a) BSE image and EDX pattern of subrounded apatite grain                                                         |
| and (b) BSE image and EDX pattern of subrounded apartic grain                                                                |
| Fig. 4.14: BSE images and EDX patterns of (a) an euhedral beryl crystal                                                      |
| and (b) a davite crystal                                                                                                     |
| Fig. 4.14 (cont): (c & d) Photomicrographs of beryl and davite, (e) X–                                                       |
| ray diffractogram of beryl and davite, and (f) BSE images                                                                    |
| and EDX pattern of garnet                                                                                                    |
| Fig.4.15: (a) Photomicrograph and (b) X – ray diffraction pattern of                                                         |
| brookite                                                                                                                     |
| Fig. 4.16: BSE image and EDX patterns of (a) ilmenite, and (b)                                                               |
| vanadiferous titanomagnetite                                                                                                 |
| Fig. 4.17: (a) X–ray diffractogram and photomicrograph of hematite and                                                       |
| goethite and, (b) BSE image and EDX pattern of pyrolusite                                                                    |
| Fig. 4.18: BSE image and EDX pattern of cassiterite                                                                          |
| Fig. 4.19: EDX pattern and BSE images of (a) pyrite, (b) hematite after                                                      |
|                                                                                                                              |
| pyrite and (c) galena                                                                                                        |
| Fig. 4.21: BSE image and EDX pattern of cerrusite                                                                            |
| Fig. 4.21: BSE image and EDX pattern of gold                                                                                 |
| Fig. 4.22. DSE images and EDV notterns of the (a) Ni and 7r. (b) Cr.                                                         |
| Fig. 4.22: BSE images and EDX patterns of the (a) Ni and Zn, (b) Cr,                                                         |
| and (c) W and Mo metals                                                                                                      |
| Fig. 5.1: The major oxides in G. Adediya and G. Um Hamad sandstones normalized to the UCC (data after Rudnick and Gao. 2003) |
| normanzed to the UCC (data after Kudnick and Cao 2003)                                                                       |

| <b>Fig. 5.2</b> : The major oxides in G. Homiyer and G. Homierat sandstones                                                       |     |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| normalized to the UCC (data after Rudnick and Gao, 2003)                                                                          | 72  |
| <b>Fig. 5.3</b> : The major oxides of siltstones at G. Homierat – G. Adediya                                                      | 72  |
| <b>Fig. 5.4:</b> Bivariant plots of Fe <sub>2</sub> O <sub>3</sub> versus Cu, Zn, Co, Ni and V for the                            |     |
| studied sandstones and siltstones                                                                                                 | 78  |
| Fig. 5.5: Relationships between Y and REE contents for the studied                                                                | , 0 |
| sandstones and siltstones                                                                                                         | 80  |
| <b>Fig. 5.6:</b> Relationships between TiO <sub>2</sub> and Nb for the studied sandstones                                         | 00  |
| and siltstones                                                                                                                    | 81  |
| Fig. 5.7: Plot of the studied sandstones and siltstones on the tectonic                                                           | 01  |
| setting discrimination diagrams proposed by Bhatia and                                                                            |     |
| Crook (1986)                                                                                                                      | 82  |
| Fig.5.8: Plots of the Al <sub>2</sub> O <sub>3</sub> -Na <sub>2</sub> O+CaO-K <sub>2</sub> O contents of the studied              | 02  |
| Adediya sandstones on the alteration ternary diagram                                                                              |     |
| adopted by Nesbitt and Young (1984)                                                                                               | 83  |
| Fig. 5.9: Plot of the studied sandstones on the chemical maturity diagram                                                         | 0.5 |
| proposed by Suttner and Dutta (1986)                                                                                              | 85  |
| <b>Fig. 5.10</b> : The major oxides of the G. Adediya ironstones normalized to                                                    | 0.5 |
| the UCC (data after Rudnick and Gao, 2003)                                                                                        | 86  |
| Fig. 5.11: Trace elements spider diagrams for the G. Adediya ironstone                                                            | 80  |
| normalized to the UCC (data after Rudnick and Gao, 2003)                                                                          | 87  |
| Fig. 5.12: Bivariant plots of Al <sub>2</sub> O <sub>3</sub> and SiO <sub>2</sub> versus Cr, Zr, and Nb                           | 87  |
| contents of the ironstone                                                                                                         | 89  |
|                                                                                                                                   | 89  |
| Fig. 5.13: Plot of Al <sub>2</sub> O <sub>3</sub> –SiO <sub>2</sub> –Fe <sub>2</sub> O <sub>3</sub> contents (wt%) of the studied |     |
| ironstone on the ternary diagram proposed by Schellmann                                                                           | 00  |
| (1983)                                                                                                                            | 90  |
| Fig. 5.14: The major oxides of G. Homierat bostonites normalized to the                                                           | 0.1 |
| Chondrite (data after MacDonough and Sun, 1995)                                                                                   | 91  |
| Fig. 5.15: Trace elements spider diagrams for the G. Homierat                                                                     |     |
| sandstones and bostonite normalized to the Chondrite (data                                                                        | 02  |
| after MacDonough and Sun, 1995)                                                                                                   | 92  |
| Fig. 5.16: Plot of the studied bostonites on the alteration diagram                                                               | 02  |
| proposed by Miyashiro (1975)                                                                                                      | 92  |
| Fig. 5.17: Correlations among the recorded heavy metals                                                                           | 100 |
| Fig. 5.18: Factor analysis data of the REE contents in the studied rocks                                                          | 100 |
| Fig. 5.19. Relationship between Eu and Sr contents of the studied rocks                                                           | 101 |
| as related to the chondritic trend                                                                                                | 101 |
| Fig. 5.20: The UCC (after Rudnick and Gao 2003) - normalized REE                                                                  | 106 |
| patterns for the studied clastic rocks                                                                                            | 106 |
| Fig. 5.21: The chondrite (data after MacDonough and Sun, 1995) -                                                                  | 106 |
| normalized REE patterns for the studied clastic rocks                                                                             | 106 |
| Fig. 5.22: The PAAS (data after MacLennan, 1989)-normalized REE                                                                   | 100 |
| patterns of the studied clastic rocks                                                                                             | 106 |
| Fig. 5.23: The UCC (data after Rudnick and Gao, 2003) - normalized                                                                | =   |
| REE patterns for the ironstone                                                                                                    | 107 |
| Fig. 5.24: The chondrite (data after MacDonough and Sun, 1995) -                                                                  |     |
| normalized REE patterns for the studied ironstone                                                                                 | 107 |
| Fig. 5.25: The PAAS (data after MacLennan, 1989)-normalized RFE                                                                   |     |

| patterns of the studied ironstone                                          | ••••• |
|----------------------------------------------------------------------------|-------|
| <b>Fig. 5.26:</b> The chondrite-normalized REE patterns for the studied G. |       |
| Homierat bostonite                                                         |       |
| Fig. 5.27: Bivariant plot of the U and Th contents of the studied rock     |       |
| types as related to the chondritic trend                                   | ••••• |
| Fig. 5.28: Speciation of thorium in the studied rocks                      |       |
| Fig. 5.29: Speciation of molybdenum in the studied rocks                   | ••••• |
| Fig. 5.30: Speciation of copper in the studied rocks                       |       |
| Fig. 5.31: Speciation of zinc in the studied rocks                         |       |
| Fig. 5.32: Speciation of nickel in the studied rocks                       |       |
| Fig. 5.33: Speciation of lead in the studied rocks                         | ••••• |
| Fig. 5.34: Speciation of cobalt in the studied rocks                       | ••••• |
| Fig. 5.35: Speciation of vanadium in the studied rocks                     | ••••• |
| Fig. 5.36: Speciation of yttrium in the studied rocks                      | ••••• |
| Fig. 5.37: Sequential leaching of some heavy metals from G. Homier         | rat   |
| siltstones                                                                 | ••••• |
| Fig. 6.1: The average concentrations (ppm) of both eU and eTh in th        | e     |
| studied rock types at different localities                                 | ••••• |
| Fig.6.2: Bivariant plots of Uc versus some trace elements for the stud     | died  |
| sandstones                                                                 | ••••• |
| Fig.6.3: Photomicrographs and alpha tracks for: (a) the iron oxides        |       |
| groundmass in the ferruginous pebbly sandstone, (b)                        |       |
| ferruginous sandstones, and (c) ferruginous siltstone                      |       |

| LIST OF TABLES                                                                             | Page No |
|--------------------------------------------------------------------------------------------|---------|
| <b>Table. 3.1:</b> Lithologic description of samples collected from the G.                 |         |
| Adediya – G. Um Hamad area                                                                 | 29      |
| <b>Table. 3.2:</b> Lithologic description of samples collected from the G.                 |         |
| Homeyir –G. Homierat area                                                                  | 36      |
| <b>Table 5.1:</b> Chemical analysis data of the major oxides (%) and trace                 |         |
| elements (ppm) of G. Adediya sandstones                                                    | 73      |
| <b>Table 5.2:</b> Chemical analysis data of the major oxides (%) and trace                 |         |
| elements (ppm) of G. Um Hamad sandstones                                                   | 74      |
| <b>Table 5.3:</b> Chemical analysis data of the major oxides (%) and trace                 |         |
| elements (ppm) of the sandstones at G. Homiyer - G.                                        |         |
| Homierat area                                                                              | 76      |
| <b>Table 5.4:</b> Chemical analysis data of the major oxides (%) and trace                 |         |
| elements (ppm) of the siltstones at G. Adediya - G. Homierat                               |         |
| area                                                                                       | 77      |
| <b>Table 5.5:</b> Average contents of trace and rare earth elements and some               |         |
| geochemical ratios for the studied various rock types                                      | 79      |
| <b>Table 5.6:</b> Chemical analysis data of major oxides (%) and trace                     |         |
| elements (ppm) for the G. Adediya ironstone                                                | 93      |
| <b>Table. 5.7:</b> Chemical analysis data of the major oxides (%) and trace                |         |
| elements (ppm) for the G. Homierat bostonite                                               | 94      |
| <b>Table 5.8:</b> Loss and gain values calculated for the studied bostonite                |         |
| <b>Table 5.9:</b> Average chemical composition of the studied sandstones as                |         |
| compared with published data                                                               | 95      |
| <b>Table 5.10:</b> Average chemical composition data of the studied ironstone              |         |
| as compared with published data                                                            | 96      |
| <b>Table 5.11:</b> Average chemical composition data for the major oxides                  |         |
| (%) for the studied bostonite as compared with published                                   |         |
| datad                                                                                      | 97      |
| <b>Table. 5.12:</b> Summary of Factor analysis data of the studied rocks                   | 98      |
| <b>Table 5.13:</b> Results of the sequential extraction of some metals in                  |         |
| selected representative sandstone, siltstone and ironstone                                 |         |
| samples                                                                                    | 112     |
| <b>Table 6.1:</b> The averages of U and Th contents (ppm) in the earth crust               |         |
| (after Heier and Rogers, 1963 and Taylor, 1964)                                            | 123     |
| <b>Table 6.2:</b> <sup>226</sup> Ra activity concentrations in different rock types (IAEA, |         |
| 1990)                                                                                      | 124     |
| <b>Table 6.3:</b> Radioactivity measurements of eU, eTh, Ra activity                       |         |
| concentration and K of the studied samples of different rock                               |         |
| types                                                                                      | 128     |
| <b>Table 6.4:</b> Averages of the original uranium, the present uranium, the               |         |
| mobilized uranium and the uranium mobilization rates in the                                |         |
| studied rocks                                                                              | 135     |