GENOTOXICITY AND MOLECULAR EFFECTS OF FENVALERATE ON EXPERIMANTAL ANIMALS AND PROTECTIVE EFFECT OF CURCUMIN ON THE SAME PESTICIDE

BY

HOSSAM EL-DIN HAMDY ABD AL HAFEZ

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004

M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

Agricultural Sciences

(Agricultural Biochemistry)

Department of Biochemistry

Faculty of Agriculture

Cairo University

EGYPT

2016

APPROVAL SHEET

GENOTOXICITY AND MOLECULAR EFFECTS OF FENVALERATE ON EXPERIMENTAL ANIMALS AND PROTECTIVE EFFECT OF CURCUMIN ON THE SAME PESTICIDE

Ph.D. Thesis

In

Agric. Sci. (Agricultural Biochemistry)

BY

HOSSAM EL-DIN HAMDY ABD- AL HAFEZ

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Dr. HOSNI MOHAMMED SHAFIK					
Professor of Biochemistry, Fac. Agric., Minia University					
Dr. MAHMOUD ABDEL HALIM MAHMOUD					
Professor of Biochemistry, Fac. Agric., Cairo University					
Dr. AWAD ABASS RAGAB					
Professor of Biochemistry, Fac. Agric., Cairo University					
Dr. FOUAD ABDEL REHEIM AHMED					
Professor of Biochemistry, Fac. Agric., Cairo University					

Date: 8/6 /2016

SUPERVISION SHEET

GENOTOXICITY AND MOLECULAR EFFECTS OF FENVALERATE ON EXPERIMANTAL ANIMALS AND PROTECTIVE EFFECT OF CURCUMIN ON THE SAME PESTICIDE

Ph.D. Thesis

IN

Agricultural Sci. (Agricultural Biochemistry)

BY

HOSSAM EL-DIN HAMDY ABD AL HAFEZ

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. FOUAD ABDEL REHEIM AHMED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. AWAD ABASS RAGAB

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. FATMA MOHAMED HAMMAM

Head Research of Mammalian Toxicology, ARC, Giza

Name of Candidate: Hossam El-din hamdy Degree: Ph.D.

Title of Thesis: Genotoxicity And Molecular Effects Of Fenvalerate On

Experimental Animals And Protective Effect Of Curcumin On The Same Pesticide

Supervisors: Dr. Fouad Abd El Reheim Ahmed

Dr. Awad Abbas Ragab

Dr. Fatma Mahamed hammam

Department: Agricultural Biochemistry

Branch:
Approval: 8/6/2016

ABSTRACT

Esfenvalerate a synthetic pyrethroid insecticide, is widely used in the home environment and in agriculture because of its high activity against a broad spectrum of insectpests and its low animal toxicity The objective of this study was to investigate the toxicity of pyrethroid insecticides on liver tissues of rats and the possible role of antioxidant plant (curcumin) as a protective agent against oxidative stress, genotoxicity and histological alterations, forty male albino rats were divided into 8 groups of 5 rats /each: G1: served as control and G2: served as positive control received (100mg/kg curcumin), G3,G4 and G5 had oral (1/20 LD50, 1/40 LD50 and 1/60 LD50 of esfenvelerate) administration respectively and the last three groups(G6,G7and G8) were received the same doses of pesticide plus 100mg /kg curcumin for 28 days daily, animals were sacrificed and bone marrow samples were collected for chromosome aberration assay test and liver samples were used for DNA damage detection by comet assay, exposure of rats to (esfen) induced significant increase in the levels of MDA and significant decrease in total protein, GSH, SOD and catalase whilst the insecticides doses plus curcumin showed decrease in MDA for high and medium dose and ameliorated the reduction of total protein concentration in low dose while induced chromosomal aberrations (CA) such as centromeric gaps, chromatid gaps, chromatid deletion, dicentricchromosome, and ring chromosome. the alkaline comet assay showed significantly increased tail moment, taillength and tailed % in liver cells of animals treated with esfenvelerate alone compared to control group. On the other hand, oral curcumin significantly ameliorated the genotoxicity induced by esfenvelrat. All these results suggest the efficacy of curcumin in amelioration chromosomal aberrations of structures as well as DNA damage, oxidative stress burden histological damage. which may result from its antioxidant properties.

Key words: pyrethroid insecticide, curcumin, genotoxicity, oxidative stress alkaline comet assay

DEDICATION

I dedicate this work to whom my heartfelt thanks; above all, Allah, then to my family including mother, father, wife and my kids for their patience, help & support along the period of my post-graduation

ACKNOWI FDGMFNT

Sincere thanks to **Dr fouad Abd-El Rehiem Ahmed** professor of biochemistry, faculty of agriculture, Cairo university, for supervision &continued help

Sincere thanks to **Dr Awad Abass R agab** professor of biochemistry, faculty of agriculture, Cairo university, for supervision &continued help

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr**. **fatma Mohammed Hammam**, ARC, Agriculture Pesticides Laboratory Mammalin Toxicology Department, for her valuable advice, valuable facilities and encouragement during the preparation of this work.

Finally my special thanks are to my colleagues and friends at central Agricultural Pesticides, laboratory for their unending support and encouragement.

LIST OF ABBREVIATION AND INITION

B.Wt : Body weight

CAT: catalase

CA : Chromosomal aberration

DNA : Deoxyribose nuclic acid

EC : Emulsion concentration

GABA : Gamma-Aminobutyric acid

GSH : Reduced glutathione

GST: glutathione-S-transferase

GSSG: Glutathione disulfide

GR : Glutathione reductase

GP_X : Glutathione peroxidase

HBSS: Hank's Balanced Salt Solution

LCT: lambda cyhalothrin

LC₅₀ : Median lethal concentration

LD₅₀ : Median lethal dose

LPO: Lipid peroxidation

MDA : Malonyldialdehyde

MN : micronuclei

PBS: Phosphate-buffered saline

ROS : Reactive oxygen species

SCE : sister-chromatid exchanges

SCGE : single-cell gel electrophoresis

SDS : sodium dodecyl sulphate

SOD : super oxide dismutase

TL: Tail length

TD: Tail DNA

TM : Tail moment

VSSC: Voltage-Sensitive Sodium Channels