Coexpression of c-KIT and *FLT3*Receptors in Patients with Acute Myeloid Leukemia

Ehesis

Submitted for the Partial Fulfillment for the Master Degree in Clinical and Chemical Pathology

By

Youstina Melad Anwaar

(M.B.B.Ch)

Faculty of Medicine – Ain-Shams University

Supervised by

Prof. Dr. Afaf Abd El Aziz Abd El Ghafar

Professor of Clinical and Chemical Pathology Faculty of Medicine -Ain Shams University

Dr. Rasha Abd El Rahman El Gamal

Lecturer of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2015

First and above all my deepest gratitude and thanks to **ALLAH** for achieving any work in my life

I would like to express my endless gratitude and deepest appreciation to **Prof. Dr. Afaf Abd El Aziz Abd El Ghafar,** Professor of Clinical and chemical Pathology, Faculty of Medicine, Ain Shams University, for her continuous guidance, valuable suggestions, encouragement and keen supervision throughout the work. It was a great honor for me to work under her supervision.

Special thanks and gratitude to Dr. Rasha
Abd El Rahman El Gamal, Assistant professor of
Clinical and chemical Pathology, Faculty of Medicine,
Ain Shams University, for her active support, valuable
comments, offering me much of her time and effort
and guidance throughout the work.

It is of great pleasure to dedicate this work to **my family**, who supported me throughout my life and surrounded me with all warmth and love that have been of great help in presenting this work.

Tist of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction	1
Aim of the Work	4
Review of Literature	
Chapter (1): Acute Myeloid I	Leukemia5
Chapter (2): C-KIT (CD117)	and FLT3 (CD135)45
Subject and Methods	70
Results	78
Discussion	97
Summary	102
Conclusion	105
Recommendations	106
References	107
Appendix	132
Arabic Summary	······

Tist of Abbreviations

Abb.	Full term				
AL	Acute leukemia				
ALL	Acute lymphoblastic leukemia				
AML	Acute myeloid leukemia				
APL	Acute promyelocytic leukemia				
BM	Bone marrow				
CBC	Complete blood count				
CBF	Core binding factor				
CD	Cluster of differentiation				
CEBPA	CCAAT/enhancer-binding protein α				
CLL	Chronic lymphoid leukemia				
CML	Chronic myelocytic leukemia				
CMV	Cytomegalovirus				
CNS	Central nervous system				
CR	Complete remission				
DCs	Dendritic cells				
EDTA	Ethylene diaminetetraacetic acid				
ELISA	Enzyme-linked immunosorbent assay				
ERK	Extracellular signal- regulated kinase				
ETO	Eight twenty one				
FAB	French-American-British				
FCM	Flow cytometry				
FISH	Fluorescence in situ hybridization				
FITC	Fluorescein isothiocyanate				
FL	FLT3 ligand				
FLK2	Fetal liver kinase 2				
FLT3	FMS-like tyrosine kinase 3				
FMS	Feline McDonough Sarcoma				
G-CSF	Granulocyte colony stimulating factor				
GIT	Gastrointestinal tract				
GM-CSF	Granulocyte-macrophage colony stimulating				
	factor				
GRB2	Growth factor receptor bound protein 2				
НВ	Hemoglobin				

Tist of Abbreviations (Cont...)

Abb.	Full term				
HLA	Human leukocyte antigen				
HRMA	High resolution DNA melting analysis				
HS	Highly significant				
HSC	Hematopoietic stem cell				
HSCT	Hematopoietic stem cell transplantation				
IPT	Immunophenotyping				
ITD	Internal tandem duplication				
JM	Juxtamembrane				
Kb	Kilobase				
KDa	Kilodalton				
LDH	Lactate dehydrogenase				
MAPK	Mitogen activated protein kinase				
MDS	Myelodysplastic syndrome				
MLL	Mixed lineage leukemia				
MoAb	Monoclonal antibody				
MPAL	Mixed phenotypic acute leukemia				
MPN	Myeloproliferative neoplasm				
MPO	Myeloperoxidase				
MRD	Minimal residual disease				
NCAML	Normal cytogenetics acute myeloid leukemia				
NPM	Nucleophosmin				
NS	Non significant				
NSE	Non specific esterase				
OS	Overall survival				
P	Probability test				
PAS	Periodic acid Schiff				
PB	Peripheral blood				
PBS	Phosphate buffered saline				
PE	Phycoerythrin				
PI3K	Phosphoinositol-3-kinase				
PLZF	Promyelocytic leukemia zinc finger				
RARA	Retinoic acid receptor alpha				
RBCs	Red blood cells				

Tist of Abbreviations (Cont...)

Abb.	Full term						
RQ-PCR	Real-time quantitative polymerase chain						
	reaction						
RR	Risk of relapse						
RT	Room temperature						
RT_PCR	Reverse transcriptase polymerase chain						
	reaction						
RTK	Receptor tyrosine kinase class						
S	Significant						
s-AML	Secondary AML						
SBB	Sudan Black B						
sCD117	Soluble CD117						
SCF	Stem cell factor						
SD	Standard deviation						
STAT5	Signal transducer and activator of transcription 5						
STK1	Stem cell tyrosine kinase 1						
t-AMl	Therapy-related AML						
TK1	Tyrosine kinase one						
TK2	Tyrosine kinase two						
TKD	Tyrosine kinase domain						
TLC	Total leukocytic count						
TM	Transmembrane						
WBC	White blood cells						
WHO	World Health Organization						
WT FLT3	Wild type FMS-like tyrosine kinase 3						
X ²	Chi-square test						

Tist of Tables

Table No.	Title	Page No.					
Table (1) :	Selected risk factors associated with AML10						
Table (2) :	FAB- classification of AML15						
Table (3) :	The World Health Organization classification of AML.18						
Table (4):	Blasts, blast equivalents, other immature cand BM & related cytochemical AML	stains in					
Table (5):	Expression of cell-surface markers for the AML						
Table (6):	Expression of cell-surface and cytoplasmic the diagnosis of AML and MPAL						
Table (7):	Standardized reporting for correlation of and molecular genetic data in AML w	rith clinical					
Table (8):	Demographic features of the patients	78					
Table (9) :	Descriptive Statistics for all cases	79					
Table (10):	Results of the flowcytometric diagnost studied AML patients	-					
Table (11):	Results of CD135 & CD117 expressions CD117 co-expression						
Table (12):	FAB subtypes of the studied AML patients	s 82					
Table (13):	Disease outcome of the studied AML patie	ents82					
Table (14) :	Correlation between CD135 with parameters						

Tist of Tables (Cont...)

Table No.	Title	Page No
Table (15)	: Correlation between CD117 with parameters	
Table (16):	Correlation between CD135 + CD117 co- with different parameters	•
Table (17):	Comparison between expression & CD13 co-expression in different AML-FAB categ	
Table (18):	Association between CD135 positive ex <i>FLT3</i> -ITD presentation	•
Table (19):	Comparison between CD135 & CD117 exp CD135+CD117 co-expression regardin outcome	g disease

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Two-Hit Hypothesis of Leukmogenesis mutations Class II mutations	
Figure (2): <i>1</i>	A high power view of a BM smear shows AM	L-M016
Figure (3): <i>A</i>	A high power view of a BM smear shows AM	L-M116
Figure (4): <i>A</i>	A high power view of a BM smear shows AM	L-M216
	A high power view of a BM smear sho	
	A high power view of a BM smear sho	
	A high power view of a BM smear sho	
	A high power view of a BM smear sho	
	A high power view of a BM smear sho	
	PB smear shows profound pancyto circulating blast, and dysplastic neutrophils.	-
Figure (11)	BM aspirate smear from a patient with AM	L includes
	granular, agranular blasts and od	

Tist of Figures (Cont...)

Figure N	9.	Title	******	•••••	Page 9	No.
Figure (12):	Cytochemic	al staining	g for I	MPO ill	lustrates	a
S]	pectrum of	scant to m	oderate	positivi	ty, whicl	ı is
	haracteristic	-	_	-		
C	ases of AML					28
Figure (13):	Intense redo	dish brown	cytoplasr	nic NSE	positivit	y is
e	vident in thi	s acute mon	ocytic le	ukemia .		28
Figure (14):	Monitoring	MRD & earl	y stratifi	cation of	f patients	on
tl	ne basis of	their respoi	ise to th	erapy ar	nd the ea	arly
tı	reatment of	relapsed dis	ease			44
Eiguno (1 E).	Cahamatia n	magantation	of ELTO	nogonto	n manan	2011
Figure (15):						
•••	•••••					10
Figure (16):	Activatio	on of <i>FLT3</i>				51
Figure (17):	Sionalino	nathways	activate	ed hv	FI.T3-\	МΤ
- , ,		•		-		
•••						_
Figure (18):		-		-		
						58
Figure (19):	FLT3 activa	ting mutati	ons four	nd in Al	ML patie	ents
					-	
Figure (20):						
						84
Figure (21):	Correlation	n betwee	en CD1	135 a	nd CI)34
•••						84

Tist of Figures (Cont...)

Figure No) .	Title	******	*****	Page	No.
Figure (22) :0		between				
Figure (23) :0		between				
Figure (24):0		between				
Figure (25):Correlation between CD135+CD117 co-expression and CD13588						
Figure (26) :0	_	ression in				
Figure (27):	CD117 exp	ression in d	ifferent F	AB sub	types.	90
Figure (28):		117 coexp				
Figure (29):	FLT3/ITD +	in CD135	CD135 ⁺ A	FLT3/I7	ΓD [–] pa	tients
Figure (30):	_	n betwee				

Introduction

Acute myeloid leukemia (AML) is a genetically clonal disorder characterized heterogeneous accumulation of acquired somatic genetic alterations in progenitor cells alter hematopoietic that normal of mechanisms self-renewal, proliferation and differentiation (Fröhling et al., 2005). This would lead to disruption in hematopoiesis with accumulation of immature or blast cells in the bone marrow and the peripheral blood, that would be manifested clinically by bone marrow failure, severe cytopenias and death if left untreated (**Ho & Butera**, 2011).

AML shows an age-related incidence, mainly increasing with age with the majority of patients older than age 60 (**Zander** *et al.*, **2008**). AML is relatively rare in children, accounting for 15–20% of pediatric leukemias, but causes a disproportionate number of childhood cancer deaths. For children less than 15 years of age overall survival rates are now approximately 60–70% (**Creutzig** *et al.*, **2012**).

Proliferation is considered to be one of the mechanisms for AML & receptor tyrosine kinases (RTK) are amongst the proliferative markers that have significant

contribution in leukemogenesis. The key proliferative RTKs for AML include c-KIT receptor (CD117) and FLT-3 receptor (CD135) (Sharawat et al., 2013). CD117, a member of class III RTK, is a diagnostic marker for AML and is expressed in >85% of patients with AML (Bene et al., 1998). CD117 might promote activation of prooncogenic regulatory molecules such as the signal transducer and activator of transcription (Baumgartner et al., 2009). There is variable data to suggest that CD117 overexpression may or may not be associated with outcome in AML (Sharawat et al., 2013).

The FLT-3 receptor (CD135), which is also a member of class III protein RTKs, is aberrantly expressed in most human leukemias, including more than 90% of cases of AML (Brown et al., 2004). It was reported that stimulation of FLT-3 receptors induces their proliferation and inhibits apoptosis by induction of BCL-2 (Lisovsky et al., 1996). Accordingly, it is considered to play an important role in the survival and expansion of primary leukemic blasts (Bruserud et al., 2003).

Flowcytometric immunophenotyping remains indispensable for proper identification of different AML subtypes (Creutzig *et al.*, 2012). As it can evaluate the

simultaneous expression of several antigens on any given cell population, flow cytometry can be regarded as an appropriate preference for detecting the coexpression of CD117 & CD135 on myeloid blasts in AML cases.

Aim of the Work

The aim of the present work is to:

- Study the coexpression levels of CD135 and CD117 on myeloblasts in patients and controls.
- Assess impact of coexpression of CD135 and CD117 on outcome in AML patients.