

Molecular Modelling and Synthesis of Certain Heterocyclic Compounds with Expected Biological Activity

Thesis Presented by

Eman Zaglol ElRazaz

Assistant Lecturer of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Submitted in partial fulfillment of the **PHD Degree**

In Pharmaceutical Sciences (Pharmaceutical Chemistry)

Under the supervision of

Prof. Dr. / Dalal A. Abou El Ella

Professor of Pharmaceutical Chemistry
Faculty of pharmacy-Ain Shams University

Prof. Dr. / Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Vice Dean for the Educational & Student Affairs Faculty of pharmacy-Ain Shams University

Dr. / Nasser Saad

Assistant Professor of Pharmaceutical Chemistry Faculty of pharmacy-Ain Shams University

Dr. / Rabah A. Taha

Lecturer of Pharmaceutical Chemistry Faculty of pharmacy-Ain Shams University

Faculty of Pharmacy

Ain Shams University

2015

Acknowledgements

I owe my deepest appreciation and truthful gratitude to **Professor Dr. Dalal A. Abou El Ella**, Professor of Pharmaceutical Chemistry, for her scientific supervision. I am really sincerely and profoundly indebted to her for her priceless guidance, endless support and immense knowledge during all stages of this work. I am heartily grateful to her indispensible opinion, real interest, invaluable advices, trust, caring, eminent guidance, and untiring help throughout the whole work. I truly thank her for his great efforts which allowed this thesis to appear in its final form.

I owe my deepest appreciation and truthful gratitude to **Professor Dr. Khaled Abouzid Mohamed Abouzid,** Professor of Pharmaceutical Chemistry and Vice Dean for
Educational and Student Affairs, for his scientific supervision. I am really sincerely and
profoundly indebted to him for his priceless guidance, endless support and immense
knowledge during all stages of this work. I am heartily grateful to his indispensible
opinion, real interest, invaluable advices, trust, caring, eminent guidance, and untiring
help throughout the whole work. I truly thank him for his great efforts which allowed this
thesis to appear in its final form.

I would like also to express my sincere thanks to **Dr. Nasser Saad**, Assistant Professor in Pharmaceutical Chemistry, for his scientific supervision, fruitful opinion, untiring help, valuable assistance and constant encouragement. My cordial gratitude extend to him for his invaluable guidance and assistance all throughout the time spent in this thesis work.

I am extremely grateful and sincerely appreciated to **Dr. Rabah Ahmed Taha**, Lecturer in Pharmaceutical Chemistry for her kindness, continuous encouragement, indispensible assistance, valuable guidance and constant support throughout the whole practical work and during writing this thesis. I really thank her for her great efforts and tremendous support.

I acknowledge with thankfulness all my colleagues in Pharmaceutical Chemistry Department, for their friendly cooperation, support and their unconditional aid.

Also I would like to express my gratitude to the National Cancer Institute, Maryland, U.S.A for performing the in-vitro anticancer assay of the synthesized compounds.

Finally, I am profoundly indebted to my mother and my family for their unconditional love and aid, endless patience, understanding, encouragement and full support all throughout the whole long way.

Table of Contents

Ac	knov	wled	gements	I
Lis	st of	Figu	res	V
Lis	st of	Tabl	les	VII
Lis	st of	Abb	reviations	VIII
Ab	stra	ct		XI
1.	In	itrod	luction	1
	1.1.	Car	ncer	1
	1.1	1.1	Overview	1
	1.1	1.2	Development	1
	1.1	1.3	Hallmarks of cancer	2
	1.1	1.4	Aetiology and carcinogenic factors	3
	1.1	1.5	Epidemiology	3
	1.1	1.6	Treatment	4
	1.2	Pro	otein kinases as cancer targeted therapy	10
	1.2	2.1	Overview on Protein kinases	10
	1.2	2.2	Overview on Tyrosine kinases (TK)	11
	1.2	2.3	Tyrosine kinase structure	12
	1.2	2.4	Tyrosine kinase Inhibitors	14
	1.2	2.5	Inhibitors of TKs with proangiogenic activity: VEGFR and related kinase	es 21
2.	Ra	atior	nale and Design	37_
	2.1	Str	ucture Activity Relationship Study (SAR)	38
;	2.2	Des	sign of novel thieno[2,3-d]pyrimidine based VEGFR-2 inhibitors:	41
;	2.3	Pre	eliminary evaluation of the designed compounds using Molecular mo	odeling
1	techr	nique	es:	45
2	2.4	Syr	nthetic schemes for synthesis of the designed compounds:	49
3.	Re	esult	ts and Discussion	54

3.1 Cl	nemistry	54
3.1.1	Scheme 1	54
3.1.2	Scheme 2	62
3.1.3	Scheme 3	66
3.2 Bi	ological Evaluation	71
3.2.1	In vitro VEGFR-2 tyrosine kinase inhibitory activity	71
3.2.2	In vitro antiproliferative activity against NCI 60-cell line	77
3.3 M	olecular modeling study	82
3.3.1	Docking study	82
3.3.2	QSAR study	102
4. Conc	lusion	105
5. Expe	rimental	106
5.1 Cl	nemistry	106
5.1.1	Materials and instrumentation	106
5.1.2	Synthesis	107
5.2 Bi	ological evaluation:	142
5.2.1	In vitro VEGFR-2 tyrosine kinase activity	142
5.2.2	In vitro Anti-proliferative activity against 60 cell line panel	143
5.3 M	olecular Modelling study	145
5.3.1	Field alignment study:	145
5.3.2	Molecular docking:	145
5.3.3	QSAR study:	146
6 Refe	rences:	148

<u>List of Figures.</u>

Figure 1. Process of cancer development	2
Figure 2. The Hallmarks of Cancer	3
Figure 3.Therapeutic Targeting of the Cancer Hallmarks	10
Figure 4 FDA-approved small-molecule kinase inhibitors	11
Figure 5.A representative protein kinase (IRK) (PDB ID 1IR3)	12
Figure 6. (a) Ribbon diagram of ATP binding site with a DFG-in activation-loop c (b) Ribbon diagram of a representative for type II inhibitor binding mode showing out activation-loop conformation	g the DFG-
Figure 7. Left panel shows a DFG-in conformation of ABL kinase bound to dasatir the right panel shows a DFG-out conformation of the ABL kinase domain bound to (36).	imatinib
Figure 8. Different binding modes for different types of kinase inhibitors	19
Figure 9.Kinase structure and different types of reversible small-molecule kinase	inhibitor. 20
Figure 10 . Schematic illustration of the expression patterns, ligand specificity and cellular/physiological effects of each of the vascular endothelial growth factor recovers.	ceptors
(VEGFRs) Figure 11. The binding mode of VEGF and VEGFR-2	
Figure 12. Tumour angiogenesis and inhibitors of VEGFR-2 signalling	
Figure 13. SAR of various potent VEGFR-2 inhibitors	39
Figure 14. (a) Reported binding mode of lead compound pyrrolo[3,2-d]pyrimiding (60) to VEGFR-2 (b) Binding mode of lenvatinib (48) to VEGFR-2	
Figure 15. Design of type II VEGFR-2 inhibitors based on pyrrolo[3,2-d]pyrimidin (60) lead compound	
Figure 16. Design of VEGFR-2 inhibitors based on Lenvatinib (48) lead compoun	d44
Figure 17. Design of type II VEGFR-2 inhibitors based on (52) lead compound	45
Figure 18. Cyclization of 2-methyl-4-nitroaniline into indazole through hydroxyd	

Figure 19. Synthetic approaches for thieno[2,3-d]pyrimidines	61
Figure 20. Example of mean graph produced from NCI 60 cell line screening progra	m 78
Figure 21. The alignment between the X-ray bioactive conformer of the lead compound and the redocked pose of the same compound at VEGFR-2 binding site	
Figure 22. Predicted versus experimental -logIC50 values of the training set according QSAR Equation	O

List of Tables.

Table 1. Type I kinase inhibitors approved by the FDA	16
Table 2 Examples of thieno[2,3-d]pyrimidine based protein kinase inhibitors.	35
Table 3. Field alignment of chosen compounds with reference molecules	47
Table 4. Percent inhibition of VEGFR-2 enzymatic activity achieved by the targeted compounds at 10 μM and the IC50 values for selected compounds	72
Table 5. Cell growth percentage of NCI 60 cancer cell lines exhibited by investigated fina compounds (XIIIg, XVb, XVId, XVIe, XVIIa, XIXa, XIXb):	
Table 6. The binding interactions of the docked compounds together with their binding energies	84
Table 7. Experimental activity of the synthesized compounds against the predicted activ	⁄ity
according to the model equation	104

List of Abbreviations

ABL: Abelson tyrosine kinase

ADMET: Absorption, Distribution, Metabolism, Excretion, and Toxicity study

ALK: Anaplastic lymphoma kinase

ANLL: Acute Non-Lymphocytic Leukemia

Asp: Aspartate

ATP: Adenine-5'-triphosphate

BAECs: Bovine aortic endothelial cells

BBB: Blood brain barrier

BCR: breakpoint cluster region protein

BSA: Bovine serum albumin

BRMs: Biological response modifiers

C-Fms: Colony-Stimulating factor-1 receptor

C-kit: v-kit (Hardy-Zuckerman 4 feline) sarcoma viral oncogene

CHARMm: Chemistry at HARvard Macromolecular Mechanics

CTLA4 mab: Cytotoxic T-lymphocytes 4A monoclonal antibody

CYP 450: Cytochrome P450

Cys: Cysteine

D₂O: Deuterium oxide

DFG: Aspartate- Phenylalanine- Glycine

DIPEA: Diisopropyl ethylamine

DMF: Dimethyl formamide

DMSO: Dimethyl sulfoxide

DNA: Deoxyribonucleic acid

EC: Endothelial cell

EI-MS: Electron impact mass spectroscopy

EGFR: Epidermal growth factor receptor

5-FU: 5-Fluorouuracil

Fab: Fragment antigen-binding

FDA: Food and Drug Administration

FGFR: Fibroblast growth factor receptor

FLT: FMS-like receptor tyrosine kinase

FT-IR: Fourier transform-Infrared

Glu: Glutamate

HER-2: Human epidermal growth factor receptor-2

HIA: Human intestinal absorption

His: Histidine

Hrs: hours

HUVEC: Human umbilical vein endothelial cells

Hz: Hertz

IC50: Half-maximal inhibitory concentration

IGFR: Insulin-like growth factor receptor

IRK: Insulin receptor kinase

JAK: Janus kinase

KDa: Kilo Dalton

KDR: Kinase insert domain receptor

Lys: Lysine

6-MP: 6-Mercaptopurine

m.p.: Melting point

Min: Minutes

MHz: Mega hertz

μM: Micromole

mmol: Millimole

μl: Microliter

MS: Mass spectroscopy

NCI: National Cancer Institute

NIH: National Institutes of Health

nM: Nanomole

NMR: Nuclear magnetic resonance

NRTK: Non-receptor tyrosine kinase

NSCLC: Non-Small Lung Cell cancer

PARP: Poly ADP ribose polymerase

Pd-C: Palladium on carbon

PDB: Protien data bank

PDGFR: Platelet derived growth factor receptor

PDT: Photodynamic therapy

Phe: Phenyl alanine

PM: Picometre

PPB: Plasma protein binding

Ppm: Part per million

PSA: Polar surface area

Raf: v-raf murine sarcoma viral oncogene

Ras: Rat sarcoma

RMSD: Root mean square deviation

RNA: Riboneucleic Acid

rt: Room temperature

RTK: Receptor tyrosine kinase

SAR: Structure activity relationship

SMART: string matching algorithms research tool

SRC: Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene

TEA: Triethyl amine

THF: Tetrahydrofuran

Tie-2: Tyrosine kinase with immunoglobulin-like and EGF-like domains 2

TK: Tyrosine kinase

TLC: Thin layer Chromatography

TP53: Tumor protein 53

U.V: Ultra violet

VEGFR: Vascular endothelial growth factor receptor

Abstract

Title of thesis:

"Molecular modeling and Synthesis of Certain Heterocyclic Compounds with Expected Biological Activity"

Name of candidate:

Eman Zaglol ElRazaz

Assistant Lecturer of Pharmaceutical Chemistry
Ain Shams University

Under the supervision of

Prof. Dr. / Dalal A. Abou El Ella

Professor of Pharmaceutical Chemistry Faculty of pharmacy-Ain Shams University

Prof. Dr. / Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Vice Dean for the Educational & Student Affairs Faculty of pharmacy-Ain Shams University

Dr. / Nasser Saad

Assistant Professor of Pharmaceutical Chemistry Faculty of pharmacy-Ain Shams University

Dr. / Rabah A. Taha

Lecturer of Pharmaceutical Chemistry
Faculty of pharmacy-Ain Shams University

Cancer, also known as a malignant tumor, is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. A major problem in treating cancer is the fact that it is not a single disease. There are more than 200 different cancers resulting from different cellular defects. The growth of new blood vessels (angiogenesis) is one of the well established hallmarks in the process of carcinogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. By targeting VEGFR-2, angiogenesis is greatly inhibited leading to the death of the tumor cells.

In this study, thienopyrimidine derivatives have been designed and synthesized as targeted angiogenesis inhibitors. The design focused on exploration of the previous revealed SAR studies, bioisosteric modifications of the lead compounds both in market and in clinical studies, and identification of the key interactions with the binding site *in silico*.

Synthesis of the designed compounds was then accomplished & their structures were confirmed by various spectral and microanalytical data.

This study involved the synthesis of the following unavailable reported intermediates:

- 1) 1-(4-Nitrophenyl)-3-phenylurea (Ia)
- 2) 1-(3-Methoxyphenyl)-3-(4-nitrophenyl)urea (Ib)
- 3) 1-(4-Nitrophenyl)-3-(m-tolyl)urea (Ic)
- 4) 1-(4-Acetylphenyl)-3-(4-nitrophenyl)urea (Ie)
- 5) 1-(4-Chlorophenyl)-3-(4-nitrophenyl)urea (Ig)
- 6) N1-(3-Bromophenyl)-3-(4-nitrophenyl)urea (Ih)
- 7) 1-(4-Ethylphenyl)-3-(4-nitrophenyl)urea (Ii)
- 8) 1-(3,4-diChlorophenyl)-3-(4-nitrophenyl)urea (Ij)
- 9) 1-(3-trifluoromethyl-4-chlorophenyl)-3-(4-nitrophenyl)urea (Ik)
- 10)1-(4-Aminophenyl)-3-phenylurea (IIa)
- 11)1-(4-Aminophenyl)-3-(3-methoxyphenyl)urea (IIb)
- 12)1-(4-Aminophenyl)-3-(m-tolyl)urea (IIc)
- 13)1-(4-Aminophenyl)-3-(4-chlorophenyl)urea (IIg)
- 14)1-(4-Aminophenyl)-3-(3-bromophenyl)urea (IIh)
- 15)1-(4-aminophenyl)-3-(3,4-diChlorophenyl) urea (IIJ)

- 16)1-(4-aminophenyl)-3-(3-trifluoromethyl-4-chlorophenyl) urea (IIk)
- 17)1-(4-Hydroxyphenyl)-3-phenylurea (IIIa)
- 18)1-(3-Bromophenyl)-3-(4-hydroxyphenyl)urea (IIIb)
- 19)1-(4-Hydroxyphenyl)-3-(3-methoxyphenyl)urea (IIIc)
- 20)1-(4-Chlorophenyl)-3-(4-hydroxyphenyl)urea (IIId)
- 21) 11-(3,4-Dichlorophenyl)-3-(4-hydroxyphenyl) urea (IIIf)
- 22)1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(4-hydroxyphenyl)urea (IIIg)
- 23)5-Nitroindazole (IV)
- 24)5-Aminoindazole (V)
- 25) 5-Amino benzimidazole (VI)
- 26) N-(4-Nitrophenyl)-2-phenylacetamide (VII)
- 27) N-(4-aminophenyl)-2-phenylacetamide (VIII)
- 28) N-(4-Hydroxyphenyl)-2-phenylacetamide (IX)
- 29) Diethyl (5-amino-3-methylthiophene)-2,4-dicarboxylate (X)
- 30) Ethyl (5-methyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidine)-6-carboxylate (XI)
- 31) Ethyl (4-chloro-5-methylthieno[2,3-d]pyrimidine)-6-carboxylate (XII)
- 32)3-((6-(Ethoxycarbonyl)-5-methylthieno[2,3-d]pyrimidin-4-yl)amino)benzoic acid (XXII)

Also, it comprised the following new intermediates:

- 1) 1-(3-Acetylphenyl)-3-(4-nitrophenyl)urea (Id)
- 2) 1-(3-Chloro-4-methylphenyl)-3-(4-nitrophenyl)urea (If)
- 3) 1-(3-Acetylphenyl)-3-(4-aminophenyl)urea (IId)
- 4) 1-(4-Acetylphenyl)-3-(4-aminophenyl)urea (IIe)
- 5) 1-(4-Aminophenyl)-3-(3-chloro-4-methylphenyl)urea (IIf)
- 6) 1-(4-Aminophenyl)-3-(4-ethylphenyl)urea (III)
- 7) 1-(3-Chloro-4-methylphenyl)-3-(4-hydroxyphenyl)urea (IIIe)
- 8) 5-Methyl-4-((4-(3-phenylureido)phenyl)amino)thieno[2,3-d]pyrimidine-6-carboxylic acid (XIVa)
- 9) 4-((4-(3-(3-methoxyphenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylic acid (XIVb)

Also, the study involved the synthesis and the characterization of the following new-targeted compounds:

- 1) Ethyl 5-methyl-4-((4-(3-phenylureido)phenyl)amino)thieno[2,3-d]pyrimidine-6-carboxylate (XIIIa)
- 2) Ethyl 4-((4-(3-(3-methoxyphenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d] pyrimidine-6-carboxylate (XIIIb)
- 3) Ethyl 5-methyl-4-((4-(3-(m-tolyl)ureido)phenyl)amino)thieno[2,3-d]pyrimidine-6-carboxylate (XIIIc)
- 4) Ethyl 4-((4-(3-(3-acetylphenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d] pyrimidine-6-carboxylate (XIIId)
- 5) Ethyl 4-((4-(3-(4-acetylphenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d] pyrimidine-6-carboxylate (XIIIe)
- 6) Ethyl 4-((4-(3-(3-chloro-4-methylphenyl)ureido)phenyl)amino)-5-methylthieno [2,3-d]pyrimidine-6-carboxylate (XIIIf)
- 7) Ethyl 4-((4-(3-(4-chlorophenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d] pyrimidine-6-carboxylate (XIIIg)
- 8) Ethyl4-((4-(3-(3-bromophenyl)ureido)phenyl)amino)-5-methylthieno [2,3d] pyrimidine -6-carboxylate (XIIIh)
- 9) Ethyl4-((4-(3-(4-ethylphenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (XIIIi)
- 10) Ethyl4-((4-(3-(3,4-dichlorophenyl) ureido) phenyl) amino)-5-methylthieno[2,3-d] pyrimidine-6-carboxylate (XIIIi)
- 11) Ethyl4-((4-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)phenyl)amino)-5-methylthieno[2,3-d]pyrimidine-6-carboxylate (XIIIk)
- 12) 5-Methyl-4-((4-(3-phenylureido)phenyl)amino)-N-propylthieno[2,3-d]pyrimidine-6-carboxamide (XVa)
- 13)4-((4-(3-(3-Methoxyphenyl)ureido)phenyl)amino)-5-methyl-N-propylthieno[2,3-d]pyrimidine-6-carboxamide (XVb)
- 14) Ethyl 5-methyl-4-(4-(3-phenylureido) phenoxy) thieno [2,3-d] pyrimidine-6-carboxylate (XVIa)
- 15) Ethyl 4-(4-(3-(3-bromophenyl) ureido) phenoxy)-5-methylthieno [2,3-d] pyrimidine-6-carboxylate (XVIb)
- 16) Ethyl 4-(4-(3-(3-methoxyphenyl) ureido) phenoxy)-5-methylthieno [2,3-d] pyrimidine-6-carboxylate (XVIc)