

Ain Shams University
University College of Women
for Art, Science and Education
Mathematics Department

NUMERICAL TREATMENT OF DIFFERENTIAL ALGEBRAIC EQUATIONS

THESIS
SUBMITTED for the Degree
Of
DOCTOR OF PHELOSOPHY (PH.D.)
(PURE MATHEMATICS)
BY

Fatma Mohamed Yousry Mohamed Mathematics Department

University College of Women for Art, Science and Education Ain Shams University

SUPERVISORS

Prof. Dr. Gamal A. Fouad Ismail
Professor of Pure Mathematics
University College of Women for
Art, Science and Education
Ain Shams University

Dr. Iman Hafiz Ibrahim
University College of Women for
Art, Science and Education
Ain Shams University

Ain Shams University University College of Women for Art, Science and Education Mathematics Department

Ph.D. Thesis (PURE MATHEMATICS)

Title of thesis:

NUMERICAL TREATMENT OF DIFFERENTIAL ALGEBRAIC EQUATIONS

Thesis supervisors:

Prof. Dr. Gamal A. Fouad Ismail
Professor of Pure Mathematics
University College of Women
for Art, Science and Education
Ain Shams University

Dr. Iman Hafiz Ibrahim
University College of Women for
Art, Science and Education
Ain Shams University

بِسْمِ ٱللَّهِ ٱلرَّحْمَانِ ٱلرَّحِيمِ

قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا ٓ إِلَّا مَا عَلَّمْتَنَا صَا إِنَّكَ أَنْتَ وَالْوا سُبُحَانَكَ أَنْتَ وَالْعَلِيمُ الْحَكِيمُ (٣٢)

صدَق اللَّهِ الْعَظِيم

Before I begin, I want to start with thanking my Lord "Allah" who is always teaching me and guiding me.

ACKNOWLEDGEMENT

I would like to use this opportunity to thank my committee supervisors Dr. Gamal A. F. Ismail, Professor of Pure Mathematics, and Dr. Iman H. Ibrahim, University College of Women for Art, Science and Education, Ain Shams University.

I am deeply indebted to their contributed substantial time and effort, continuous invaluable guidance, support, encouragement, and patience during the course of my research. Working with them is a valuable experience for me.

I am also very grateful to the Mathematical Department, Ain Shams University for providing the financial support and facilities without which this dissertation would not have possible.

My passion, love gratitude to my parents, my hasuband who always gives me sincerely and endlessly in return for nothing.

CONTENTS

ABSTRACT SUMMARY	i iii		
Chapter 1	***		
•			
Introduction and Basic Concepts			
1.1 Differential algebraic equations	1		
1.1.1 Classsification of DAEs	3		
1.2 Linear DAEs with constant coefficients	5		
1.3 Index of DAEs	8		
1.3.1 The index for non-linear DAEs	11		
1.4 Consistent initial values	23		
1.5 Index reduction and constraint stabilization	25		
1.6 Hessenberg form for the DAE	28		
1.6.1 Hessenberg Index-1 Form	28		
1.6.2 Hessenberg Index-2 Form	29		
1.6.3 Hessenberg Index-3 Form	29		
1.7 Application for DAEs	30		
1.7.1 Multibody Systems	30		
1.7.2 Electrical Circuit Models	32		
Chapter 2			
Numerical Methods for Solving ODEs and DAEs			
2.1 Introduction	37		
2.2 Implicit Runge-Kutta methods for DAEs	42		
2.3 An implicit Runge-Kutta method for IDEs	43		
2.4 Linear multistep methods for ODEs and DAEs	46		
2.4.1 LMMs applied to DAEs	47		
2.4.2 Error analysis	48		
2.4.3 Stability analysis	49		
2.5 Backward differentiation formulae	54		
2.5.1 Extended BDF	56		
2.5.2 Modified extended BDF	59		
2.5.3 Order of MEBDF applied to DAEs	62		
2.6. Parametric class	63		
2.6.1 The Extended parametric class	66		
2.7. Hybrid methods	66		

Chapter 3 Hybrid Special Class For Solving Differential-Algebraic Equations

3.1	Introduction	71		
3.2	The proposed first hybrid class	73		
	3.2.1 Formulation of the first hybrid class	73		
	3.2.2 Stability analysis	81		
3.3	The proposed second hybrid class	84		
	3.3.1 Formulation of the second hybrid class	84		
2 1	3.3.2 Stability analysis The proposed third hybrid class	90 92		
3.4	The proposed third hybrid class 3.4.1 Formulation of the third hybrid class	92 92		
	3.4.2 Stability analysis	92 97		
3 5	Numerical tests	101		
	Conclusion	101		
	Chapter 4			
	G-stable One -Leg Hybrid Methods for Solving			
ODEs and DAEs				
	6220 2122			
4.1	Introduction	111		
	4.1.1 Existence and Uniqueness	113		
	G-stability	115		
	Error Bounds for One-Leg Methods The hybrid elegans	116		
	The hybrid classes One-leg method for the first hybrid class	118 120		
	One-leg method for the second hybrid class	120		
	Numerical tests	124		
	Conclusion	135		
•••		100		
	Chapter 5			
	Hybrid Multistep and One-Leg Hybrid Methods			
	For Implicit Mixed DAEs			
	Introduction	137		
5.2	Implementation of the first hybrid class on DAEs	140		
	5.2.1 The first hybrid Method	140		
	5.2.2 The one-leg twin	144		
5.3	Implementation of the second hybrid class on DAEs	149		
	5.3.1The Second hybrid method	149		
= 1	5.3.2 The one-leg twin	154		
5.4	Implementation of the third hybrid class on DAEs 5.4.1 The third hybrid method	158 158		
	5.4.2 The one-leg twin	161		
5.5	Numerical tests	163		
	Conclusion	170		

Chapter 6 Practical Models

6.1 Introduction	173
6. 1.1 Ordinary differential systems, ODEs	174
6. 1.2. Differential-algebraic systems, DAEs	174
6.2 Constrained mechanical systems	175
6.2.1 Numerical results	177
6.3 Circuit simulation	179
6.3.1 Linear circuit with one CV loop	179
6.3.2 Simple CV circuit	182
6.3.3 Linear with CV loops	183
6.3.4 Linear circuit with one LI cutest	185
6.4 Rectifier circuit	188
6.4.1 Rectifier diode circuit	188
REFRENCESS	192
ARABIC SUMMARY	

ABSTRACT

Abstract

Fatma Mohamed Yousry Mohamed. "Numerical Treatment of Differential Algebraic Equations." Doctor of Philosophy of Science dissertation (Pure Mathematics) .University College of Women for Art, Science and Education, Ain Shams University

The main purpose of this thesis is to study; the proposed numerical methods for solving ordinary differential equations and differential algebraic equations.

This thesis is divided into six chapters:

In *chapter 1*, the definition of differential equation and it's sources are presented. Some fundamentals are mentioned such as, index, Index Reduction and Consistent initial values. Types of the differential algebraic equation are presented. Hessenberg forms are discussed.

In *chapter 2*, numerical methods for solving ODEs and DAEs are discussed such as Runge-Kutta method, linear multistep method, Backward Differentiation Formulae, Extended BDF, Modified Extended BDF, Parametric class and its extended and Hybrid method. Order of MEBDF applied to DAEs.

In *chapter 3*, three classes of hybrid methods to solve systems of differential algebraic equations (DAEs) and its stability analysis are introduced. These classes are based on a free parameter class of linear multistep method (LMM). Two classes contain one step point and one stage point (off-step point) of the first derivative of the solution. The third one contains two step points and one stage point of the first derivative of the solution.

In chapter 4, the one-leg twin of the first two hybrid classes in chapter 3 are studied for step k=2 and k=3. The order of convergence of these methods are determined according to the value of the parameters and compared to the

order of convergence of their twin hybrid

multistep methods. The G-stability of these methods are studied. Finally, the

methods are tested by solving DAEs.

Chapter 5 focuses on the implemented of the three hybrid classes and its twin

one-leg methods on the implicit mixed differential algebraic equations. The

orders of convergence for the above methods are discussed. Numerical tests are

introduced.

In chapter 6 some practical problem are solved by the proposed classes which

introduced in chapters 3 and 4.

Keywords: Stiff ODEs; DAEs; Multistep Methods; BDF; Hybrid Methods;

Stability Aspects; One-leg Methods; G-Stability; Order of convergence.

ii

SUMMARY

SUMMARY

This thesis focuses on the numerical treatment of differential algebraic equations (DAEs). Many applications of circuit analysis, engineering and mathematical modeling lead to systems of DAEs; Some of these systems can be reduced to ordinary differential equation (ODEs) and then solved by ordinary differential equation methods. Other systems whose reduction to an explicit differential system is either impossible or impractical are solved directly. Throughout the thesis, some proposed methods for solving ODEs and DAEs are introduced; their stability and convergence are studied. Finally, some practical models are solved.

One of the main objectives for the research presented here is to investigate some of the numerical methods that have been developed for computing solutions to DAEs. We focus on Hybrid methods and their one leg methods for solving DAEs as this encompasses a wide variety of problems that appear in engineering studies.

The presented thesis consists of six chapters:

In <u>chapter 1</u>, the definition of differential algebraic-equation and it's sources are presented. Some fundamental concepts of DAEs are mentioned such as the classification of DAEs (Nonlinear DAEs, Linear DAE with constant coefficients, Linear time varying DAEs, Semi-explicit DAEs, Linear implicit DAEs, Fully-implicit DAE), the different definitions of index (differential index, perturbation index, tractability index, geometric index), index Reduction, consistent initial values and Hessenberg forms. At the end of this chapter, some applications are mentioned.

In <u>chapter 2</u>, numerical methods for solving ODEs and DAEs are mentioned such as Runge-Kutta method, linear multistep method, Backward Differentiation Formulae, Extended BDF, Modified Extended BDF, parameteric class of multistep method and its extended multistep method, 2+1 hybrid BDF, hybrid BDF methods (HBDF).

In <u>chapter 3</u>, three classes of hybrid methods to solve systems of differential algebraic equations (DAEs) are introduced. These classes are based on a free parameter class of linear multistep method. Two classes contain one step point and one stage point (off-step point) of the first derivative of the solution. The third one contains two step points and one stage point of the first derivative of the solution. The parameter is selected to improve the absolute stability regions. The proposed solution methodologies have larger stability regions compared to the backward differentiation formulae (BDF), the extended backward differentiation formulae (EBDF), and the Hybrid backward differentiation formulae (HBDF). The constructed first class is A-stable of the orders 2 to 5, and A(α)-stable of the orders 6 to 11. The second class is A-stable of the orders 2 to 5 and A(α)-stable of the orders 6 to 10. The last class is A-stable of the orders 3 and 4 and A(α)-stable of the orders 5 to 9. The A-stable methods of the three classes are L-stable. Numerical tests are conducted to validate the performance of the proposed technique.

In <u>chapter 4</u>, an introduction to one-leg method and the definition of G-stability are mentioned. The One-Leg twin of the first two hybrid classes in chapter 3 are studied for steps k=2 and k=3. The order of convergence of these methods are determined according to the value of the parameters and compared to the order of convergence of their twin hybrid multistep methods. The G-stability of these methods is studied. The introduced methods were found to have some advantages over others numerical methods, such as backward differential formula (BDF).

In the first class, for k = p = 2, the one-leg twin has order 2 except when s = (1/3) (-3 + $\sqrt{3}\sqrt{(1-2\beta^* + \beta^* 2)}$) it has order 3. For k = p = 3, the one-leg twin has order 2, however, if $\beta^* = 0$, which leads to one leg hybrid BDF, or s = 1, which leads to the parameters class (4.41), it has order 3. In the second class, for k = p = 2, the one-leg twin has order 2 except when $s = -(-1+\beta^*)/\sqrt{3}$ it has order 3. For k = p = 3, the one-leg twin has order 2, however, if $\beta^* = 0$, which leads to hybrid BDF, or s = 0, which leads to the parameters class (4.41) it has order 3. The corresponding one-leg twin of the two classes is G-stable for k = 2 and k = 3. The numerical tests show that the first class gives better results than the second.

The new results of this chapter are published in "Journal of Advances in Mathematics (JAM)", Vol. 5, No. 2 (2014) 711-722.

<u>Chapter 5</u> focuses on the implementation of the three hybrid classes and its twin one-leg methods on the implicit mixed differential algebraic equations. The orders of convergence for the above methods are determined and some numerical tests are solved.

Finally, <u>in Chapter 6</u>, the new methods in chapter 3, 4 and 5 are used to solve models with differential-algebraic equations .The results are shown in figures and tables.