

Ain shams university
Faculty of medicine
General surgery department

Robotic surgery

An essay submitted for partial fulfillment of Master degree in general surgery

By

GAMAL MOHAMMED SABRY ABDEL HADI

M.B.B.CH

Supervised by

PROF.DR.AWAD HASSAN AL-KAYAL

Professor of general surgery

Faculty of medicine-Ain shams university

DR.IBRAHIM MOHAMMED EL-ZAYAT

Consultant of general surgery

Mansoura international specialized hospital

الله المنهانك لا عِلْم لَذَا إِلاَّ مَا عَلَمْتَذَا الْعَلِيمُ الْمَكِيمِ الْعَلِيمُ الْمَكِيمِ

حدق الله العظيم

سورة البقرة الآية ٣٢

Acknowledgement

First of all, prayerful thanks to our Merciful "ALLAH", who gave me the ability and patience to finish this work

Cardial thanks; sincere gratitude and respectful appreciation are offered to *Prof. Dr. Awad Hassan al-kayal*, *Professor of General Surgery Faculty Of Medicine*, *Ain Shams University* for his continuous guidance, encouragement and consistent advice and keen suggestion during the course of this study.

Sincere thanks and indebtedness to *Prof.Dr. Ibrahim mohammed el-zayat*. *Consultant Of General Surgery Mansoura International Specialized Hospital* for his interesting supervision, faithful advices, helpful suggestions and cooperation during the course of this work.

Gamal Mohammed Sabry

2014

Dedication

This work is dedicated to those who give a meaning to my life.

To My father, my mother and my grandfather who give me everything without waiting for anything.

To My dear Wife who is always supporting and patient.

To my sister who is always side by side with me.

To my sweet heart, my daughter, Aseel who add happiness to my life.

To the spirit of my grandmother who I missed so much.

To every child in the world who are suffering from damage of wars.

Gamal mohammed sabry

Contents

Introduction

Aim of work

Review of literature

Chapter one History.

Chapter two Robotic surgical system.

Chapter three Why procedure performed

Chapter four Building a robotic surgery program

Chapter five Advantage of robotic surgery

Chapter six Disadvantage of robotic surgery

Chapter seven Application of robotic surgery

Chapter eight Laparoscopic versus robotic surgery

Chapter nine Summary and conclusion.

Chapter ten References

English summary.

References.

Arabic summary.

List of contents

Introduction	1
Aim of the work	3
History	4
Robotic Surgical Systems	12
Building a robotic surgery program	23
Advantages of Robotic Surgery	42
Disadvantages of Robotic Surgery	52
APPLICATIONS OF ROBOTIC SURGERY	63
Summary and Conclusion	96
References	98
الملخص العربي	1

List of Figures

No	Figure	Page
Fig (1):	PUMA 560	7
Fig (2):	AESOP robotic system	11
Fig (3):	A surgeon manipulating the Zeus system. The	13
	surgeon is using two manipulators and his voice in	
	order to control the three arms of the system	
Fig (4):	ZEUS robotic systems.	14
Fig (5):	The manipulator of the da vinci system	16
Fig (6):	The console of the da Vinci system	16
Fig (7):	The console integrates two manipulators, placed in	17
	line with the 3-D display of the surgical field	
Fig. (8):	Separate images for the left and right eye are	17
	displayed in the console, resulting in a true 3D	
	image of the operative field	
Fig. (9):	The foot pedals (from left to tight) for "clutching",	18
	camera control, future applications and diathermy.	
	The middle pedal is for focus control	
Fig. (10):	The surgeon console and robotic cart are connected	18
	by cables	
Fig (11):	The three robotic arms: the camera arm in the	19
	middle and the two instrument arms at both sides	
Fig (12):	The da Vinci instruments provide two additional	20
	degrees of freedom at the tip of the instrument	
Fig (13):	Robotic instrument trocar (diameter 8 mm)	20

Fig (14):	The video cart with (from top to bottom): monitor	21
	insulflator, Sonosurg ultrasonic dissection	
	generator, video recorder, light source (2), camem	
	unit (2), focus control and SYnchronizer (2)	
Fig (15):	The robotic telescope. consisting of two 5-mm	22
	scopes	
Fig (16):	Back table set up and laparoscopic instrument	26
	basket	
Fig (17):	the patient is placed in steep Trendelenburg position	27
	prior to draping	
Fig (18):	Patient positioning and room configuration prior to	28
	right robotic-assisted laparoscopic pyeloplasty	
Fig (19):	Operating room setup	30
Fig (20):	The bimanual canying (BC) task	32
Fig (21):	The needle-passing (NP) task	33
Fig (22):	The suture-tying (SI) task	33
Fig (23):	Rotation of the end-effector of the instrument	48
Fig (24):	Schematic overview of operating-theatre set-up	67
	during robot-assisted laparoscopic cholecystectomy	
Fig (25):	Port size and placement for robotic colectomy	69
Fig (26):	Configuration of trocars for extraperitoneal robotic	72
	prostatectomy.	
Fig (27):	Intraoperative picture of robotic pyeloplasty	74
	operation. Dissection of ureter and renal pelvis.	

List of abbreviations

AESOP	Automated Endoscopic System ForOptimum Positioning
API	Application Programming Interface
APS	Automated Positioning System
ASD	Atrial Septal Defect
ВС	Bimanual Carrying
CO2	Carbon Dioxide
СРВ	Cardiopulmonary Bypass
CRT	Cathode Ray Tube
CT	Computerized tomography
CV	Crossing Vessels
D	Total travelling distance of surgical instrument
2D	2-Dimensional
DOF	Degree Of Freedom
ETV	Endoscopic Third Ventriculostomy
FDA	Food & Drug Administration
HZ	Hertz