BACTEC MGIT 960 TB SYSTEM IN DIAGNOSIS OF BOTH PULMONARY AND EXTRA PULMONARY TUBERCULOSIS

Essay
Submitted for partial Fulfillment of Master Degree
(of faculty medicine)

By

Mohamed Alaa Eldin Refaat

(M.B.B.Ch) Ain Shams University

Supervised by Prof. Dr. Emad Ahmed Barakat

Professor of Internal medicine Faculty of Medicine Ain Shams University

Prof.Dr. Amira Ahmed Salem

Professor of Internal medicine Faculty of Medicine Ain Shams University

Dr. Azza Emam Mohmed

Assistant Professor of Internal medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University

نظام باكتيك ماجيت ٩٦٠ المتعلق بالدرن في تشخيص الدرن داخل وخارج الرئة

رسالة توطئة للحصول على درجة الماجستير في أمراض الباطنة مقدمة من محمد علاء الدين رفعت بكالوريوس الطب والجراحة

> تحت إشراف الأستاذ الدكتور/ عماد أحمد بركات أستاذ أمراض الباطنة كلية الطب جامعة عين شمس

الأستاذ الدكتور/ أميرة أحمد سالم أستاذ أمراض الباطنة كلية الطب جامعة عين شمس الدكتور/ عزة إمام محمد أستاذ مساعد أمراض الباطنة كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٠٨

Background. Tuberculosis is the leading cause of death from a curable infectious disease and a major cause of morbidity in the world. The tuberculin skin test (TST) has been used for more than 100 years for the diagnosis of both active and latent tuberculosis. Bacteriological examination of the clinical specimens plays an important role in the diagnosis of any mycobacterial infection, more so for TB. The introduction of broth based growth systems, has significantly reduced the time to detection and increased the total number of positive cultures. Aim of the study is to compare the use of BACTEC MGIT 960 TB system and to compare with conventional method such as TST and Lowenstein-Jensen (LJ) medium for detection of Mycobacterium tuberculosis in pulmonary TB and extra pulmonary TB.

Methods. Pulmonary samples and extra pulmonary samples were taken from 20 patients diagnosed as pulmonary TB and 20 patients diagnosed as extrapulmonary TB. All patients will be subjected to the following: Full history taking, thorough clinical examination, laboratory investigations: Liver function tests: ALT, AST, serum bilirubin, Prothrombin time (PT) and Prothrombin Concentration (PC), Complete blood picture (CBC), ESR & CRP, kidney function test, fasting blood sugar & 2hrs post prandial radiological examination (e.g. chest X-ray), abdominal ultrasonography, Tuberculin Skin Test. All samples will also be examined microscopically using the ZN stain for the presence of acid fast bacilli as per the standard protocol. All the processed clinical specimens, both directly and after digestion and decontamination, will be inoculated onto the LJ medium slopes and into The BACTEC MGIT 960 culture tube the time to detection and total number of positive cultures recovered by both the methods will be recorded.

Results. Patients were classified into two groups; group I patients with pulmonary TB (20) patients 16(80%) of them were men and 4(20%) were women their mean age was 37+13 years and group II patients with extra-pulmonary TB (20 patients (Meningitis 5 patients 12.5%, Peritoneal 8 patients 20%, and lymphadenitis 7 patients 17.5%) 14(70%) of them were men and 6(30%) were women their mean age was 38.5+17 years. A) Pulmonary tuberculosis patients presented clinically with: Night fever and night sweating in 100% of the patients. Weight loss in 80% of the patients. Hemoptysis in 60 % of the patients. Cough and expectoration in 80% of patients. Pulmonary Tuberculosis patients presented radiologically with heterogenous opacity in the upper zone of the lung in 90% of the patients and pleural effusion in 40% of patients.B) Extrapulmonary tuberculosis patients presented as the following: 1-TB Meningitis: Toxic symptoms (night fever night sweating and weight loss) in 100% of the patients Persistent Headache in 100% of the patients Neck rigidity in 100% of patients. 2- TB Peritonitis: Toxic symptoms (night fever night sweating and weight loss) in 90% of the patients b. Liver cirrhosis and ascites in 40% of patients. c. Liver cirrhosis and refractory ascites in 60% of patients. TB Lymphadenopathy: Toxic symptoms (night fever night sweating and weight loss) in 100% of the patients Generalized lymphadenopathy in 50% of the patients. Cervical lymphadenopathy in 50% of the patients. CSF specimens: Revealed a high protein content of 4-6 g/L (400-600 mg/dL); and a low glucose concentration leukocyte count (up to 1000/L), usually with a predominance of lymphocytes but with a predominance of neutrophils in two patients. Ascitic fluid specimens: Revealed exudative fluid with a high protein content 5-7 g/L and leukocytosis usually with a predominance of lymphocytes. <u>Lymph nodes specimens:</u> Histologic examination of lymph node biopsies showed caseating granulomatous lesions.

Conclusion. We conclude by noting that clinicians must always rely on clinical judgment, BACTEC MGIT 960 system is valuable, sensitive, specific, accurate and rapid test especially useful in diagnosis of extra-pulmonary TB.

Acknowledgement

I express my deepest thanks and gratitude to, for his help in supervision, guidance, and words of encouragement.

I wish to express my sincere gratitude and deep appreciation to, Ain Shams University, for his great support to the work and guidance which were extremely useful.

I wish to express my sincere gratitude to, Ain Shams University, for valuable support and suggestions.

Finally, I wish to express my deepest gratitude and appreciations to my family and all of those who helped get this work accomplished.

List of contents

Title	Page
List of tables	
List of figures	
List of abbreviations	
Introduction	1
Aim of the work	4
Review of literature	5
Chapter 1: Overview of Tuberculosis	5
Chapter 2: Diagnostic Approaches	23
Chapter 3: Evolution of treatment	48
Patients and methods	66
Results	71
Discussion	86
Summary & Conclusion	90
Recommendations	91
References	92
Arabic summary	

List of abbreviations

TST	TD 1 1' 1' 4 4
	Tuberculin skin test
PPD	Purified protein derivative
BCG	Bacillus Calmette-Guerin
MDR TB	Multidrug resistant tuberculosis
HIV/ AIDS	Human immunodeficiency virus/ Acquired
	immunodeficiency syndrome
ТВ	Tuberculosis
ZN	Zeil – Nelson
LJ	Lowenstein Jensen
NTM	non tuberculosis mycobacteria
ATT	anti TB therapy
MGIT	Mycobacteria Growth Indicator Tube
WHO	World Health Organization
TNF-α	Tumor necrosis factor alpha
IFN-γ	interferon-gamma
M. tuberculosis	Mycobacterium Tuberculsois
CSF	cerebrospinal fluid
AFB	Acid fast bacilli
INH	isoniazid
RIF	rifampicin
CDC	Centers for Disease Control and Prevention
ADA	Adenosine deaminase
ESAT	early secreted antigenic target
CFP	culture filtrate protein
RD1	region of difference 1
ELISPOT	enzyme-linked immunospot
PCR	Polymerase chain reaction
DOT	Direct Observation Treatment

List of Tables

No.	Title	Page
Table (1)	Epidemiologic Indices for Tuberculosis	6
Table (2)	Tuberculin skin test cut-off of reactive	28
	area for a positive tuberculin reaction	
Table (3)	Characteristics of Methods for Clinical	30
	Mycobacteriology	
Table (4)	Doses of Anti-tuberculosis Drugs for	48
	Adults and Children	
Table (5)	Drug Regimens for Culture-Positive	51
	Pulmonary Tuberculosis Caused by Drug-	
Table (6)	Susceptible Organisms Selected Treatment Regimens for Drug-	60
	resistant Tuberculosis	00
Table (7)	Comparison between both studied groups	72
	as regarding general data	, _
Table (8)	Distribution of the studied cases as	73
Tuble (0)	regarding diagnosis	
Table (9)	Comparison between both studied groups	74
	as regarding TST	
Table (10)	Comparison between both studied groups	75
	as regarding laboratory data (blood sugar	
	and kidney functions)	
Table (11)	Comparison between both studied groups	75
	as regarding laboratory data (liver	
	functions –CBC-CRP)	
Table (12)	Distribution of both studied groups as	76
	regarding MGIT results	

List of Tables (Cont.)

No.	Title	Page
Table (13)	Distribution of pulmonary group as regard	76
	Zeil Nielsen results	
Table (14)	Distribution of extra pulmonary group as	77
	regard Zeil Nielsen results	
Table (15)	Comparison between both groups as	78
	regard Zeil Nelseen results	
Table (16)	Comparison between both groups as	79
	regard chest x-ray findings	
Table (17)	Comparison between both groups as	81
	regard U/S findings	
Table (18)	Comparison between LJM versus MGIT	83
	and ZN among pulmonary group	
Table (19)	Comparison between ZN versus MGIT	83
	among extra-pulmonary group	
Table (20)	Sensitivity, specificity, PPV, NPV and	84
	accuracy of MGIT in comparison to ZN	
Table (21)	Comparison between LJM and MGIT	84
	durations among pulmonary group	
Table (22)	Comparison between LJM and MGIT	85
	durations among extra-pulmonary group	

List of Figures

No.	Title	Page
Figure (1)	Estimated tuberculosis Cases -2001	7
Figure (2)	Tuberculosis notification rates, 2005	7
Figure (3)	Estimated HIV prevalence in new TB	8
	cases, 2005	
Figure (4)	Non-specific inflammation with white	10
	blood cell migration and primary	
	hematogenic dissemination	
Figure (5)	Primary infection, inoculation lesion,	11
	primary complex, and initial TB	
	dissemination	
Figure (6)	Tuberculous lymphadenitis. Computed	16
	tomographic scan of the neck reveals a	
	heterogeneous mass in the right posterior	
	cervical space (arrow) with central	
	necrosis	
Figure (7)	Tuberculous empyema. Computed	16
	tomographic scan showing loculated	
	pleural fluid and pleural thickening	
	(arrow) in the right chest with associated	
	right lower lobe atelectasis	
Figure (8)	Spinal tuberculosis. Magnetic resonance	17
	imaging of the spine revealing	
	osteomyelitis involving T10 and T11	
	vertebral bodies and disc space (A; arrow)	
	and an adjacent multiloculated	
	paravertebral abscess (B; arrow)	

List of Figures (Cont.)

No.	Title	Page
Figure (9)	Psoas abscess. Computed tomographic	18
	scan of the abdomen showing a left	
	iliopsoas abscess (arrow) that likely	
	originated from tuberculous osteomyelitis	
	involving the T12, L1, and L2 vertebrae	
Figure (10)	Erythema nodosum (a) and erythema	26
	induratum of Bazin (b	
Figure (11)	Phlyctenular tuberculin reaction	29
Figure (12)	Presence or absence of genes in region of	39
	difference 1 (RD1) in mycobacteria	
Figure (13)	Distribution of the studied cases as regard	73
	diagnosis	
Figure (14)	Comparison between both studied groups	74
	as regarding TST	
Figure (15)	Distribution of extra pulmonary group as	77
	regard Zeil Nielsen results	
Figure (16)	Comparison between both groups as	78
	regard Zeil Nielsen results	

List of Figures (Cont.)

No.	Title	Page
Figure (17)	Comparison between both groups as	79
	regard chest x-ray findings	
Figure (18)	Chest x-rays revealed lung lesions in	80
	pulmonary tuberculosis	
Figure (19)	Comparison between both groups as	81
	regard U/S findings	
Figure (20)	Ultrasound pictures revealed liver	82
	cirrhosis and ascites	
Figure (21)	Comparison between LJM and MGIT as	85
	regard duration	

Introduction and Aim of the work

Review of Literature

Patients and Methods