

Ain Shams University University College for Women Arts, Science, and Education

Nanocatalysts Prepared Through Sol-Gel Technique For Petrochemicals Industry and Environmental Pollutants Removal

A Thesis
Submitted for the Ph.D. degree in science
(Physical Chemistry)

by

Amira Abdalla Hussein Abdalla

Supervised by Prof. Dr. Essam Mohammed Ezzo

Professor of Physical Chemistry Chemistry Departement University College for Women Arts, Science, and Education Ain Shams University

Dr.Suzan Ahmad Hassan

Asst.Prof. of Physical Chemistry Chemistry Departement University College for Women Arts, Science, and Education Ain Shams University

Dr. Maha Kamel El-aiashy

lecturere of Physical Chemisty hemistry Departement University College forwomen Arts, Science, and Education Ain Shams University

Ain Shams University University College for Women Arts, Science, and Education

Nanocatalysts Prepared Through Sol-Gel Technique For Petrochemicals Industry and Environmental Pollutants Removal

A Thesis
Submitted for the Ph.D. degree in science
(Physical Chemistry)

by

Amira Abdalla Hussein Abdalla

Supervised by Prof. Dr. Essam Mohammed Ezzo

Professor of Physical Chemistry Chemistry Departement University College for Women Arts, Science, and Education Ain Shams University

Dr.Suzan Ahmad Hassan

Asst.Prof. of Physical Chemistry Chemistry Departement University College for Women Arts, Science, and Education Ain Shams University

Dr. Maha Kamel El-aiashy

lecturere of Physical Chemisty hemistry Departement University College forwomen Arts, Science, and Education Ain Shams University

Ain Shams University University College for Women Arts, Science, and Education

APPROVAL SHEET

Nanocatalysts Prepared Through Sol-Gel Technique For Petrochemicals Industry and Environmental Pollutants Removal

A Thesis

Submitted for the Ph.D Degree in Science

(Physical Chemistry) by

Amira Abdalla Hussein Abdalla

Board of Advisors Approved

Prof. Dr. Essam Mohammed Ezzo

Ass. Prof. Dr. Suzan Ahmad Hassan

Dr. Maha Kamel Elaiashy

Ain ShamsUniversity University College for Women Arts, Science, and Education

Student Name: Amira Abdalla Hussein Abdalla

Scientific Degree: Master Science (Chemistry)

Departement: Chemistry

Name of Collage: University College for Women

For Arts, Science and education

University: Ain Shams

M.Sc. Graduation Date: 2012

Ph.D. Graduation Date: 2015

Acknowledgment

I do thank ALLAH for all gifts he gave me.

Words are no real assistance to express my deepest gratitude and thanks to Prof. Dr. Essam Mohammed Ezzo, Professor of Physical Chemistry, Chemistry Departement, University College for Women for Arts, Science and Education, Ain Shams University for suggesting the point and for his Keen Supervision, fruitful assistance, useful discussion, his constructive guidance and inestimable encouragement he has given me in order to complete my thesis. Also, I am indebted to express my sincere thank to Ass. Prof. Dr. Suzan Ahmad Hassan , Physical Chemistry, Chemistry Departement , University College for Women for Arts, Science and Education Ain Shams University for useful discussion ,her constructive guidance . Also, I am indebted to express my sincere thank to Dr.Maha Kamel Elaiashy, University College for Women for Arts, Science and Education, Ain Shams University for their encouragement, continuous help and careful guidance, throughout the accomplishment of this work .Finally, my deep thanks to all staff members at my department for their encouragement and moral support.

To Professor Dr. Essam Mohammed Ezzo for his great supervision and continuous advices.

To My husband for his patience, encouragement and love.

To My family, mother, father and sisters for their love and moral support in my whole life.

To All my friends and colleagues for their Kindness and support.

Contents

Subjects	Page
Approval sheet	1
Qualification	II
Acknowledgement	Ш
• Dedication	IV
List of tables	XII
List of figures	xxv
• Abbreviations	xxx
Aim of the work	XXXI
CHAPTER I	1
I. Introduction	1
I.1.Nanomaterials	1
I.2.What is catalysis?	3
I.2.a. Silica as Support Material	4
I.2.a.1. Multifunctional Active Sites on Silica S	urfaces
By Grafting of Metal Complexes	4
I.2.a.2. Grafting on Strained Siloxane Bonds	5
I.2.a.3.Grafting on Adjacent Hydroxyl Sites	5
I.3.a.Titanium Dioxide	6
I.3.b.Sulfated Metal	9

I.4.Methods of Preparation of Nanomaterials	11
I.4.a. Solution Chemistry	12
I.4.a.1.Co-preciptation method	12
I.4.a.2.Electrodeposition process	13
I.4.a.3. Electroless deposition process	13
I.4.a.4.Mechanochemical processing (MCP)	14
I.4.a.5.Microemulsions processing	14
I.4.a.6.Sol-gel process	15
I.4.a.7. Impregnation Method	17
I.4.b.Physical methods	17
I.4.b.1. Sputtering deposition	17
I.4.b.2.The ion and electron beam irradiation	
Deposition	17
I.5.Application of Nanomaterials	18
I.5.i.Drug delivery	18
I.5.ii.Nanocatalysis	20
I.5.iii. Biodiesel production	22
I.5.iv.Waste water treatment	23
I.6.Kinetics of Heterogeneous Catalytic Reaction	26
In Flow SystemI.7.The Role of Nanoparticles in the Removal of	∠0
Pollutants	34

I.8. Theoretical Aspects Pertaining to the Performed	
Physicochemical Measurements and Calculations	35
I.8.1 Nitrogen Sorption Analysis	35
I.8.2 Powder X-Ray Diffraction (XRD) Measurements	39
I.8.2.1. Small Angle X-Ray Scattering (SAXS)	40
I.8.3. Electron Microscopy	41
I.8.3.1.Transmission Electron Microscopy (TEM)	41
CHAPTER II	44
II.Experimental	44
II.A. Starting Materials	44
II.A.1. Reagents	44
II.A.2.Catalysts	46
II.A.2.1.Sulfated titania over silica	46
II.A.2.2.Active carbon preparation	47
II.A.2.3. Doped Sulfated titania with active carbon	
over silica	47
II.A.3 Techniques and Apparatus	50
II.A.4.Analysis of the Liquid Products by Gas-	
Liquid Chromatograph	52
II.B. Physicochemical Studies of the Prepared	
Solids	53
II.B.1. Textural Characteristics (BET)	53

II.B.2. Thermogravimetric Analysis (TGA)53
II.B.3.Differential Thermal Analysis (DTA)53
II.B.4. Transmission Electron Microscopy (TEM)54
II.B.5. X-ray Diffraction Analysis54
II.B.6. Energy Dispersive X-ray (EDX)55
II.C. Kinetic Study of The Heterogeneous Catalytic
Conversion of Cyclohexene Over Nano Sulfated Titania
and Doped Sulfated Titania with Active Carbon
Supported Silica Catalysts In Flow System68
II.C.1. Experiments at different temperatures
(Order of reaction)69
II.C.2. Experimental determination of apparent activation
Energy for conversion of cyclohexene75
II.C.3.Determination of specific activity and selectivity
for conversion of cyclohexene75
II.C.4. Determination of the change in weight of the
Catalyst76
1- Determination of the loss in weight of the catalyst
due to calcinations76
2- Determination of the gain in weight of the catalyst
after experiments76
II D Environmental Application 77

II.D.1. Intial Dye Concentration78	3
Isotherm model78	8
II.D.2.Contact time80)
II.D.3. Speed of feeding80)
II.D.4. Temperature80)
CHAPTER III8	1
III. Results and discussions8	1
III.A. Physico Chemical Analysis Of Sulfated Titania and	
Mixed Sulfated Titania Carbon Supported Silica	
Nanoparticles8	1
III.A.1. Textural Characteristics (BET)8	1
III.A.1.a. Specific surface area (S _{BET})81	
III.A.1.b. Assessment of porosity as V-t plots and	
pore size distribution84	
1-The V _L - t plots:84	
2- Pore size distribution88	3
III.A.2.Thermogravimetric Analysis (TGA) and	
Differential Thermal Analysis (DTA)91	1
III.A.3.Transemission Electron Microscopy (TEM)102	1
III.A.4.XRD104	4
III.A.5.Energy Dispersive x-Ray Spectroscopy (EDX)10	6
III.B. The Kinetic Studies Of The Heterogeneous Catalytic Conversion Of Cyclohexene In Flow System109	9
III.B.1.a.Effect of Contact Time on Activity and Selectivity	

of ST/ 3SiO ₂ Nanocatalyst	110
III.B.1.b. Effect of Temperature on Activity and Sele	ectivity of
ST/3SiO ₂ Nanocatalyst and Detremination of the Ap	parent
Activation Energy	119
III.B.2.a. Effect of Contact Time on Activity and Selection	ctivity of
ST/2SiO ₂ Nanocatalyst	129
III.B.2.b. Effect of Temperature on Activity and Sele	ectivity of
ST/2SiO ₂ Nanocatalyst and Detremination of the Ap	parent
Activation Energy	137
III.B.3.a. Effect of Contact Time on Activity and Sele	ectivity of
0.5ST/3SiO ₂ Nanocatalyst	146
III.B.3.b. Effect of Temperature on Activity and Sele	ectivity of
0.5ST/3SiO ₂ Nanocatalyst and Detremination of the	Apparent
Activation Energy	154
III.B.4.a. Effect of Contact Time on Activity and Sele	ectivity of
0.5STC/3SiO ₂ Nanocatalyst	163
III.B.4.b. Effect of Temperature on Activity and Sele	ectivity of
0.5STC/3SiO ₂ Nanocatalyst and Detremination of th	e Apparent
Activation Energy	172

III.B.5. a.Effect of Contact Time on Activity and Selecti	vity of
STC/3SiO ₂ Nanocatalyst	181
III.B.5. b.Effect of Temperature on Activity and Select	tivity of
STC/3SiO ₂ Nanocatalyst and Detremination of the App	arent
Activation Energy	189
III.B.6.The Specific Activity and Selectivity on The	
Catalytic Conversion of Cyclohexene	198
III.C . Environmental Application	215
III.C. 1. Effect of intial dye concentration	215
Adsorption Isotherm	216
III.C. 2. Effect of contact time	222
III .C.3. Effect of magnetic stirring	225
III .C.4. Effect of temperature	.229
CHAPTER IV	.235
Summary and Conclusions	.235
Reference	240

List of Tables

Table No.	Title	Page
1	The composition of the catalysts used calcined at temperature of 550 °C.	49
2	Adsorption – desorption data for nitrogen at -196°C for ST/3SiO ₂ at 550°C.	56
3	Adsorption – desorption data for nitrogen at -195°C for ST/2SiO ₂ at 550°C.	57
4	Adsorption – desorption data for nitrogen at -195°C for 0.5ST/3SiO ₂ at 550°C.	58
5	Adsorption – desorption data for nitrogen at -195°C for 0.5STC/3SiO ₂ at 550°C.	59
6	Adsorption – desorption data for nitrogen at -195°C for STC/3SiO ₂ at 550°C.	61
7	The data analysis for X – ray diffraction pattern for $ST/3SiO_2$ at $550^{\circ}C$.	62
8	The data analysis for X – ray diffraction pattern for $ST/2SiO_2$ at $550^{\circ}C$.	62
9	The data analysis for X – ray diffraction pattern for $0.5ST/3SiO_2$ at $550^{\circ}C$.	63
10	The data analysis for X – ray diffraction pattern for $0.5STC/3SiO_2$ at $550^{\circ}C$.	64