Correlation between Plasma Osteopontin Level and Severity of Hepatic Fibrosis in Non Alcoholic Fatty Liver Disease

Thesis
Submitted for partial fulfillment of Master Degree
in Internal Medicine

Presented by
Nermeen Mohamed Abd Elkerim Soliman
(M.B., B.Ch)

Faculty of medicine - Ain Shams University (2006)

Supervised by

Prof. Dr /Mohsen Mostafa Maher

Professor of Internal Medicine and Gastroentrology Faculty of Medicine - Ain Shams University

Prof. Dr/ Tarek Mohamed Yosef

Professor of Internal Medicine and Gastroentrology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgement

First, thanks are all directed to ALLAH for helping me to accomplish this research, and for providing me with such very encouraging and supportive supervisors.

I would like to express my deepest gratitude to **Prof. Dr**Mohsen Mostafa Maher, professor of Internal Medicine and

Gastroentrology, Faculty of Medicine, Ain Shams University, for

his great support and continous encouragement throughout the

whole work under his guidance and supervision.

I am also deeply indebted to **Prof. Dr Tarek Mohamed Yosef**, professor of Internal Medicine and Gastroentrology, Faculty of Medicine, Ain Shams University, for his great support and guidance throughout the whole work.

My deepest appreciation and grateful thanks are due to **Dr.**Ahmed Ibrahim Mohamed El-Shafie, Lecturer of Internal Medicine and Gastroentrology, Faculty of Medicine, Ain Shams University, for his kind advices and his great effort throughout this work.

Also, I cannot fully express my deep gratitude and thanks to my family, who I loved a lot and to whom I dedicate this work.

LIST OF CONTENTS

Title	
Introduction	
Aim of the work	
Review of Literature:	
Fatty liver	5
Non-Alcoholic Fatty liver disease	13
Osteopontin	67
Conclusion, Limitations And Future Perspectives	96
Patients and Methods	
Results	
Discussion	127
Recommendation	
Summary and Conclusion	
References	
Arabic Summary	

LIST OF ABBREVIATIONS

ALD Alcoholic liver disease
ALP Alkaline phosphatase
ALT Alanine transaminase
ASH Alcoholic steatohepatitis
AST Aspartate transaminase
BMI Body mass index
BSP-1 Bone sialoprotein I
CTComputed Tomography
DM Diabetes Mellatus
ETA-1T-lymphocyte activation
FBSFasting blood sugar
FFAs Free fatty acids
FLD Fatty liver disease
HBV Chronic viral hepatitis B
HCC Hepatocellular carcinoma
HCV Chronic viral hepatitis C
HDL High-density lipoprotein
Hh pathway Hedgehog pathway

HIV..... Chronic autoimmune hepatitis

HSCs Hepatic satellite cells

IRS Insulin receptor substrate

LDLlow-density lipoprotein

LPSLipopolysaccharide

MF-HSCs Myofibroblastic HSCs

MRIs Magnetic resonance images

NAFLD Non Alcoholic Fatty liver disease

NASH Non Alcoholi Steoto-Hepatitis

NF Nuclear factor

NK Natural killer

OPN..... Osteopontin

PPPost prandial

PPAR-α Peroxisome-proliferator-activated receptor-α

TGF Transforming growth factor

TNF Tumor necrosis factor

ThT-helper

LIST OF FIGURES

Figure No.	Title	Page No
(1)	Mild NAFLD steatosis	102
(2)	Non-alcoholic steatohepatitis (NASH). In addition to fatty change	102
(3)	Mallory's hyaline in non-alcoholic steatohepatitis	103
(4)	Differences of OPN level between cases and control	110
(5)	Correlation between OPN level and sex of patient	111
(6)	Correlation of hypertension between cases and control	116
(7)	Correlation between OPN level and hypertension	117
(8)	Correlation between OPN level and BMI	118
(9)	Correlation between OPN level and grading of liver fibrosis	122

(10)	Correlation between OPN level and degree of liver fibrosis	124
(11)	Correlation between OPN level and degree of liver fibrosis	125
(12)	Correlation between OPN level and grading of liver fibrosis	126

LIST OF TABLES

Table No.	Title	Page No
(1)	Causes of fatty liver	9
(2)	Classification of body mass index	34
(3)	General characteristics of the study participants	106
(4)	Descriptive Statistics of cases	108
(5)	Descriptive Statistics of control	108
(6)	Differences of OPN level between cases and control	109
(7)	Correlation between OPN level and sex of patient	111
(8)	Correlation between OPN level and age of patient	112
(9)	Correlation between OPN level and age of patient by pearson correlation	112
(10)	Correlation between OPN level and AST and ALT level	113

(11)	Correlation between OPN level and ALP level	113
(12)	Correlation between OPN level and lipid profile	114
(13)	Correlation between OPN level and fasting and postprandial blood sugar	115
(14)	Correlation between OPN level and hypertension	117
(15)	Correlation between OPN level and BMI	118
(16)	The descriptive statistics of fibrosis grading	119
(17)	The descriptive statistics of degree of fibrosis	120
(18)	Correlation between OPN level and grading of liver fibrosis	121
(19)	Correlation between OPN level and grading of liver fibrosis by pearson correlation	121
(20)	Correlation between OPN level and degree of fibrosis	123
(21)	Correlation between OPN level degree of fibrosis by pearson correlation	123

INTRODUCTION

NAFLD is considered to cover a spectrum of disease activity. This spectrum begins as fatty accumulation in the liver (hepatic steatosis). A liver can remain fatty without disturbing liver function, but by varying mechanisms and possible insults to the liver may also progress to evident inflammation of the liver. When inflammation occurs in this setting, the condition is then called NASH. Over time, up to 20 percent of patients with NASH may develop cirrhosis (Adams and Anglo, 2009).

The exact cause of NAFLD is still unknown. However, both obesity and insulin resistance probably play a strong role in the disease process. The exact reasons and mechanisms by which the disease progresses from one stage to the next are not known (Clark and Diehl, 2003).

Most patients with NAFLD have few or no symptoms. Patients may complain of fatigue, malaise, and dull right-upper-quadrant abdominal discomfort. Mild jaundice may be noticed although this is rare. More commonly NASH is diagnosed following abnormal liver function tests during routine blood tests. By definition, alcohol consumption of over 20 g/day (about 25 ml/day) excludes the condition (Nseir et al., 2010).

NAFLD is associated with insulin resistance and metabolic syndrome (obesity, hyperlipidemia, type II diabetes mellitus and high blood pressure) (**Pagano et al., 2002**).

Common findings are elevated liver enzymes and a liver ultrasound showing steatosis. An ultrasound may also be used to exclude gallstone problems (cholelithiasis). A liver biopsy is the only test widely accepted as definitively distinguishing NASH from other forms of liver disease and can be used to assess the severity of the inflammation and resultant fibrosis If any (Chalasani et al., 2012).

However, liver biopsy has several disadvantages, including poor patient compliance as it is painful and of high costs, sampling errors, limited usefulness for dynamic follow up, and a risk of complications typical of invasive procedures such as pneumothorax, bleeding, or puncture of the biliary tree. In rare cases, patients die of bleeding (Mirella and Cristina, 2007).

it is worth mentioning that the histological tested fragment is however a small part of the liver, and the scar lesions, which are secondary to chronic inflammatory processes are unevenly distributed in the liver mass. Thus, liver biopsy is a method neither ideal nor sufficient to diagnose and determine the stage of liver fibrosis. In this context, a noninvasive method

Introduction

to assess liver fibrosis is more than welcome (Wieckowska et al., 2007).

Non-invasive diagnostic tests have been developed, such as FibroTest, that estimates liver fibrosis, (Haflon et al., 2008). And SteatoTest, that estimates steatosis (Ratziu et al., 2006).

Osteopontin is a secreted phosphorylated glycoprotein that is expressed by a variety of cell types and that mediates numerous and diverse biological functions, it was expressed mainly by kupffer cells, hepatic macrophages and Hepatic satellite cells (HSCs). It stimulates T cell proliferation and induces T cell and macrophages to express other T helper type 1 cytokines during inflammation (Ramaiah and Rittling, 2007).

AIM OF THE WORK

The aim of the present study is to evaluate the level of plasma Osteopontin as a non-invasive biomarker in patients with NAFLD and correlate its level with the severity of hepatic fibrosis as seen by histopathological examination of liver biopsy.

FATTY LIVER

Introduction:

Fatty liver, also known as FLD, is a reversible condition where large vacuoles of triglyceride fat accumulate in liver cells via the process of steatosis (i.e. abnormal retention of lipids within a cell). Despite having multiple causes, fatty liver can be considered a single disease that occurs worldwide in those with excessive alcohol intake and those who are obese (with or without effects of insulin resistance). The condition is also associated with other diseases that influence fat metabolism. Morphologically, it is difficult to distinguish alcoholic FLD from nonalcoholic FLD, and both show microvesicular and macrovesicular fatty changes at different stages (**Reddy and Rao 2006**).

Accumulation of fat may also be accompanied by a progressive inflammation of the liver (hepatitis), called steatohepatitis. By considering the contribution by alcohol, fatty liver may be termed alcoholic steatosis or NAFLD, and the more severe forms as alcoholic steatohepatitis (part of alcoholic liver disease) and NASH (Manton et al., 2000).

Epidemiology:

The prevalence of FLD in the general population ranges from 10% to 24% in various countries (**Angulo, 2002**).

However, the condition is observed in up to 75% of obese people, 35% of whom will progress to NAFLD (Hamaguchi, 2005).

Despite no evidence of excessive alcohol consumption. FLD is the most common cause of abnormal liver function tests (Angulo, 2002).

Fatty livers occur in 33% of European-Americans, 45% of Hispanic-Americans, and 24% of African-Americans (Daniel and DeNoon, 2008).

Pathology:

Fatty change represents the intracytoplasmic accumulation of triglycerides (neutral fats). At the beginning, the hepatocytes present small fat vacuoles (liposomes) around the nucleus (microvesicular fatty change). In this stage, liver cells are filled with multiple fat droplets that do not displace the centrally located nucleus. In the late stages, the size of the vacuoles increases, pushing the nucleus to the periphery of the cell, giving characteristic signet ring appearance (macrovesicular fatty change). These vesicles are well