

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Utilization of Limestone Quarries Powder In Production of Self-Compacting Concrete

A Thesis

Submitted in Partial Fulfillment for Requirements of the Degree of Master of Science in Structural Engineering

By Eng. Ahmed Mohammed Hesham Ibrahim Azzam

B.SC. Civil Engineering Ain Shams University, 2011

Supervisors

Dr. Ahmad Fathy Abd El Aziz

Associate Professor Structural Engineering Department Faculty of Engineering, Ain Shams University

Dr. Ahmed Rashad Mohammed

Assistant Professor Structural Engineering Department Faculty of Engineering, Ain Shams University

Cairo 2016

APPROVAL SHEET

Researcher Name: Ahmed Mohammed Hesham Ibrahim Azzam

Thesis Title	hesis Title : Utilization of Limestone Quarries Powder In		
Production of Self-Compacting Concrete			
Thesis : Master of Science in Civil Engineer		ineering (Structural)	
Examiners Committee: Signature			
Prof. Dr. Tarek Aly El Sayed			
Professor of Properties and Strength of Materials Faculty of Engineering of Mataria - Helwan University			
Prof. Dr. El -Sa	yed Abdel-Raouf Nasr		
1	ties and Testing of Materials ring - Ain Shams University		
Dr. Ahmad Fatl	by Abd El Aziz		
		•••••	
	- Structural Engineering Department ring - Ain Shams University		

(Supervisor)

Researcher Na	me: Ahmed Mohammed Hesha	m Ibrahim Azzam	
Thesis Title	: Utilization of Limestone Quarries Powder In		
	Production of Self-Compacting Concrete		
Thesis	: Master of Science in Civil	Engineering (Structural)	
Supervision	Committee:	<u>Signature</u>	
Dr. Ahmad Fathy Abd El Aziz Associate Professor Structural Engineering Department Faculty of Engineering Ain Shams University			
Assistant Profes	neering Department neering		

INFORMATION ABOUT THE RESEARCHER

Name : Ahmed Mohammed Hesham Ibrahim Azzam

Date of birth : 28 January 1989

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of

: Structural Engineering specialization

University issued the

degree

: Ain Shams

Date of issued degree : August 2011

Current job : Teaching Assistant

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author at Properties and Testing of Materials laboratory of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other university or institute.

Date:

Name: Ahmed Mohammed Hesham Ibrahim

Signature:

ACKNOWLEDGMENT

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, **Dr. Ahmed Fathy Abdel Aziz**, for his valuable guidance and support.

I also greatly appreciate the great help, guidance and support provided by **Dr. Ahmed Rashad Mohammed** throughout all stages of the research, beside his continuous encouragement and valuable advices he gave to me.

The experimental work was carried out at the properties and testing of materials laboratory of structural department at Ain Shams university. The help of the laboratory staff in developing work is greatly appreciated especially Mr. Nabil, Mr. Yehia, Mr. Samir, Mr.Sayed, Mr. Emad, chemist Ashraf and all the labours (Mahmoud, Atef, Hany, Sherif, Islam and M. Asem)

Finally, I would like to express my appreciation to my father, my beloved mother, my great wife, my little son Hesham, my two brothers Seif and Nour and the whole family for lots of support and encouragement.

ABSTRACT

Since the introduction of Self Consolidated Concrete SCC in Japan during the late 1980's, acceptance and usage of this concrete in the construction industry has been steadily gaining momentum. In United States, the use of SCC has been spearheaded by the precast concrete industry. SCC must possess the following key fresh properties: filling ability, passing ability, while being cohesive, i.e. capable to resist segregation. In order to increase segregation resistance, SCC mixes are typically designed with high powder content, and/or contain chemical admixtures such as super plasticizers and viscosity modifying admixtures, which in turn, tend to significantly increase the overall cost of SCC.

In limestone quarries, considerable amounts of limestone powder **LP** are being produced as byproducts from stone crushers. High amounts of powder are being collected; utilization of this byproduct is of big benefit from disposal and environmental pollution aspects. Incorporation of limestone quarry powder in SCC as a filler can reduce the common cost of SCC, beside the improvement of concrete sustainability.

The main objective of this research was to study the effectiveness of using locally available limestone quarries powder, in the production of enhanced SCC mixtures. The influence of carefully chosen powder types resulting diverse local sources was investigated. experimental/comparative study of both its fresh and mechanical properties was conducted to decide the best powder source. Then, a profound investigation for the effect of powder content was followed in deep to decide the best performance of the produced SCC, with regard to each of its accomplished properties respectively; fresh, mechanical, and Finally, an examination for the durability. improvementfrom incorporating a specific content of silica fume with lime powder was followed.

The experimental program was divided into two phases, namely:

Phase one; which designed to evaluate the three different sources of investigated LP, through chemical and physical experimental tests. In addition, the fresh and mechanical properties of three SCC mixes from these powders were conducted.

Phase two; was designed to assess the influence of a variable contents of the best powder source determined from phase one on the fresh, mechanical and durability properties of the developed SCC mixes. A final SCC mix was performed to study the improvement of incorporating the best LP content with silica fumes on the fresh and hardened properties of the concrete.

Experimental test results revealed that Al-Menia quarry powder is the best among other sources, and that 30 to 40% LP replacement of fine aggregate produced a significant improvement for the mechanical and durability properties. Beside LP, employing silica fume was found to have a little improvement on the mechanical and durability properties of concrete.

Keywords: Self-Compacting Concrete, Limestone Powder, Silica Fumes, Fresh Properties, Hardened Properties, Durability.

	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
TABLE OF CONTENTS	iv
LIST OF FIGURES	·· xii
LIST OF TABLES.	xvi
CHAPTER (1) 1. INTRODUCTION	
1.1.Background	1
1.2. Definition of the problem	3
1.3. Objectives of The Research Work:	4
1.4. Thesis Organization	5
CHAPTER (2) 2. LITERATURE REVIEW	
2.1. Introduction	7
2.2. Development History of SCC	9
2.3. Advantages and Disadvantages of SCC	11
2.4. Applications of SCC	12
2.4.1. Using SCC in Burj Dubai	13
2.4.2. SCC in Arlanda Airport Control Tower in Sweden	15
2.4.3. National Museum of 21st Century Arts in Rome	16
2.5. Fresh Properties of SCC	17
2.5.1. Rheology	18

2.5.2. Yield stress	. 20
2.5.3. Workability	. 20
2.5.3.1. Filling ability	. 20
2.5.3.2. Passing Ability	. 23
2.5.3.3. Resistance to segregation	. 25
2.5.4. Testing of Fresh Properties of SCC	. 26
2.5.4.1. Slump Flow and T ₅₀ Test	. 27
2.5.4.2. J-Ring Test	. 29
2.5.4.3. V-Funnel Test T_0 and T_5 minutes	. 31
2.5.4.4. L-Box Test	. 33
2.5.4.5. GTM Screen Stability Test	. 35
2.5.5. Mortar testing	. 37
2.5.6. Parameters Influencing Fresh Characteristics of SCC	. 38
2.6. Hardened Properties of SCC	. 40
2.6.1. Mechanical Properties	. 41
2.6.1.1. Compressive Strength	. 41
a. Introduction	. 41
b. Strength Ratio	. 42
i. Cement Strength Class	. 43
ii. Addition Type	. 43
iii. Air Content	. 45
iv. Strength Model	. 45

2.6.1.2. Tensile Strength	
2.6.1.2.1. Indirect Tensile Strength	48
2.6.1.2.2. Flexural Tensile Strength	50
2.6.1.3. Modulus of Elasticity	51
2.6.1.4. Bond Strength to Reinforcement	52
2.6.2. SCC Shrinkage	52
2.6.2.1. Autogenous Shrinkage	52
2.6.2.2. Drying Shrinkage	53
2.6.2.3. Plastic Shrinkage	54
2.6.3. Long-Term Durability	54
2.6.3.1. Paste Microstructure	54
2.6.3.2. Resistance to freezing and thawing and deice	er salt scaling55
2.6.3.3. Resistance to Carbonation	56
2.7. Mix Proportioning for SCC	56
2.7.1. Mixture Proportion Methodology	57
2.7.1.1. Powder Type SCC	57
2.7.1.2. Viscosity Agent Type SCC	58
2.7.1.3. SCC Combination Type	59
2.7.2. Performance Requirements of SCC	60
2.7.3. Constituent Materials Requirements	61
2.7.4. Mixture Proportioning Procedure	61
2.7.4.1. Provisions of ACI for SCC Proportioning	62

A. Establishing coarse aggregate content
i. Coarse aggregate content for Category (I)
ii. Coarse aggregate content for Category (II)
B. Powder and water content
C. Paste and mortar volume
2.7.4.2. European Guidelines of SCC (EFNARC)
A. Initial mix composition66
B. Adjustment of the mix 67
2.7.4.3. Japan Society of Civil Engineers method
2.8. Sustainability of Concrete
2.8.1. Harmful Emissions from Cement Industry 69
2.8.2. Limestone Powder Disposal
2.8.3. Different Uses of Limestone (Ground calcium carbonate) 71
A. Coarse/Medium ground71
B. Fine/ultrafine ground
C. Crushed stone (Aggregates)
2.8.4. Limestone Powder in Cement and Concrete
2.8.4.1. Limestone powder as a cement filler
2.8.4.2. Limestone Powder as a Filler in Concrete
2.8.5. Environment friendly SCC using limestone powder 75
2.9. Research Related to the Use of By-products in SCC
2.10. Need for this research

CHAPTER(3)

3.	EXPERIMENTAL WORK	
	3.1. Introduction	80
	3.2. Objective of Research Plan	80
	3.3. Experimental Program	81
	3.4. Mix Proportions	84
	3.5. Specimen Preparation	85
	3.5.1. Mixing	85
	3.5.2. Casting	86
	3.5.3. Curing	86
	3.6. Testing Procedure	88
	3.6.1. Fresh Concrete Tests	88
	3.6.1.1. Slump Flow and T50 Test	88
	3.6.1.2. J-Ring Test	89
	3.6.1.3. L-Box Test	90
	3.6.1.4. V-Funnel Test	92
	3.6.1.5. GTM Screen Stability Test	93
	3.6.2. Hardened Concrete	95
	3.6.2.1. Compressive Strength Test	95
	3.6.2.2. Tensile Splitting Strength Test	95
	3.6.2.3. Flexural Strength Test	96
	3.6.2.4. Bond Strength Test (Pull out Test)	97

	5. Modulus of Elasticity	99
3.6.2.	6. Drying Shrinkage1	01
3.6.3.	Durability Tests	02
3.6.3.	1. Water Penetration Depth Test 1	02
3.6.3.	2. Rapid Chloride Penetration Test 1	04
3.6.3	3. Sorptivity Test	09
3.6.3.	4. Sulphuric Acid Attack Test 1	10
3.6.3.	5. Abrasion Resistance Test 1	11
CHA	PTER (4)	
4. MATE	RIAL CHARACTERIZATION	
4.1.In	ntroduction1	13
4.2. C	ntroduction1	13
4.2. <i>C</i> 4.2.1.	troduction	13 13
4.2. <i>C</i> 4.2.1. 4.2.2.	troduction	13 13 14
4.2. <i>C</i> 4.2.1. 4.2.2. 4.2.3.	troduction	13 13 14 15
4.2. <i>C</i> 4.2.1. 4.2.2. 4.2.3. 4.2.4.	troduction	13 13 14 15 17
4.2. <i>C</i> 4.2.1. 4.2.2. 4.2.3. 4.2.4. 4.2.5.	troduction	13 13 14 15 17 20

CHAPTER (5)

).	. RESULTS & DISCUSIONS		
	5.1. Introduction	122	
	5.2. Phase (I)	123	
	5.2.1. Fresh Properties Test Results	123	
	5.2.1.1. Slump Flow Test	123	
	5.2.1.2. <i>J-Ring Test</i>	124	
	5.2.1.3. L-Box Test	125	
	5.2.1.4. GTM Screen Stability Test	127	
	5.2.1.5. V-Funnel Test	129	
	5.2.2. Hardened Properties	131	
	5.2.2.1. Compressive strength	132	
	5.2.2.2. Splitting Tensile Strength	133	
	5.2.2.3. Modulus of Elasticity Test	134	
	5.3. Stage (2)	136	
	5.3.1. Fresh Properties Test Results	136	
	5.3.1.1. Slump Flow and T50 Test	136	
	5.3.1.2. J-Ring Test	138	
	5.3.1.3. L-Box Test	139	
	5.3.1.4. GTM Screen Stability Test	140	
	5.3.1.5. V-Funnel Test	141	
	5.3.2. Hardened Properties	143	