Comparative analysis of the effect of aging on recent esthetic CAD/CAM materials

A thesis submitted for the partial fulfillment of the Master

Degree requirements in Crown & Bridge, Faculty of Dentistry,

Ain Shams University

By:

Mohamed Samy Abd El Samee Ibrahim Zaky

Resident in the Fixed Prosthodontics department.

B.D.S

Faculty of dentistry,
Ain Shams University,
2010

Supervisors:

Dr. Tarek Salah Morsi

Assistant Professor and Head of Fixed Prosthodontics

Department,

Faculty of Dentistry, Ain Shams University

Dr. Amr Saleh El-Etreby

Lecturer at Fixed Prosthodontics Department,
Faculty of Dentistry, Ain Shams University

Faculty of Dentistry

Ain Shams University

2015

Acknowledgment

No words can express my deepest thanks and sincere gratitude as well as appreciation to **Dr. Tarek Salah Morsi**, Assistant Professor at Crown and Bridge department, Faculty of Dentistry, Ain Shams University. From finding an appropriate subject in the beginning to the process of writing the thesis, his valuable advice, devoted effort and unique cooperation, will always be deeply remembered. This work could have never been completed without his extraordinary assistance and sincere guidance.

The good advice, support and friendship of **Dr. Amr El Etreby**, lecturer at Crown and Bridge Department, Faculty of Dentistry, Ain Shams University has been invaluable on both an academic and a personal level, for which I am extremely grateful. His devoted effort, close supervision and remarkable help are highly appreciated.

Last but not least, deepest thanks to my dear professors, colleagues and staff members of Crown and Bridge Department, Faculty of Dentistry, Ain Shams University for their great support, encouragement and cooperation.

Dedication

This work is dedicated to

My dear parents,

Precious sister,

Beloved fiancée

Contents

LIST OF FIGURES	I
LIST OF TABLES	III
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF THE PROBLEM	24
AIM OF THE STUDY	25
MATERIALS AND METHODS	26
RESULTS	50
DISCUSSION	70
SUMMARY	80
CONCLUSION	83
REFERENCES	84
APPENDIX	95
ARARIC SUMMARY	

List of Figures

Figure 1: IPS e.max CAD block	27
Figure 2: Vita Suprinity CAD block	28
Figure 3: Lava Ultimate CAD block	29
Figure 4: Vita Enamic CAD block	30
Figure 5: Tests sequence of the study	32
Figure 6: Isomet saw 4000	33
Figure 7: Preparing Vita Suprinity samples	33
Figure 8: Samples cut to thickness 1.5mm	34
Figure 9: Finishing and polishing kit	35
Figure 10: Polished Lava Ultimate (right) and Vita Enamic (left) samples	35
Figure 11: Ivoclar programat P300 furnace	36
Figure 12: Crystallized and glazed Vita Suprinity (right) and IPS e.max	CAD (left)
samples	37
Figure 13: Illustration of the piston and 3 steel balls	47
Figure 14: Platform of the biaxial flexural strength; piston and 3 balls	48
Figure 15: Universal testing machine	49
Figure 16: close up of a sample in the universal testing machine	49
Figure 17: Split copper mold	38
Figure 18: Sample fixed in auto polymerizing resin	39
Figure 19: Premolar cusp embedded in the auto polymerizing resin	40
Figure 20: Sensitive balance weighing a sample	41
Figure 21: Concept of wear simulating machine	42
Figure 22: Wear simulating machine	42
Figure 23: Ceramic sample embedded in resin block fixed into the upp	er sample
holder	43
Figure 24: Close up of the upper and lower compartments holding the test samples	
	43

Figure 25: Schematic diagram of Optical Interference Microscope used for
Roughness measurements
Figure 26: Zygo Optical interference microscope
Figure 27: Representative sample of the wear in Vita Suprinity51
Figure 28: Representative sample of the wear in IPS e.max CAD51
Figure 29: Representative sample of the wear in Vita Enamic52
Figure 30: Representative sample of the wear in Lava Ultimate52
Figure 31: Line graph showing the means of materials' weight loss 55
Figure 32: Line graph showing means of enamel weight loss57
Figure 33: Surface roughness of IPS e.max CAD before aging58
Figure 34: Surface roughness of IPS e.max CAD after aging58
Figure 35: Surface roughness of Vita Enamic after aging59
Figure 36: Surface roughness of Vita Enamic before aging59
Figure 37: Surface roughness of Lava Ultimate before aging59
Figure 38: Surface roughness of Lava Ultimate after aging
Figure 40: Surface roughness of Vita Suprinity after aging60
Figure 39: Surface roughness of Vita Suprinity before aging
Figure 41: Bar chart showing roughness before and after aging63
Figure 42: Representative sample for the fracture pattern of IPS e.max CAD control
group64
Figure 43: Representative sample for the fracture pattern of Vita Suprinity control
group64
Figure 44: Representative sample for the fracture pattern of Vita Enamic control
<i>group</i>
Figure 45: Representative sample for the fracture pattern of Lava Ultimate control
group65
Figure 46: Bar chart showing biaxial flexural strength before and after aging 69

List of tables

Table 1: Materials' brand names used in the study20
Table 2: Standard composition of IPS e.max CAD2
Table 3: Standard composition of Vita Suprinity29
Table 4: Chemical composition of ceramic part of Vita Enamic30
Table 5: Mechanical properties of different CAD/CAM materials3:
Table 6: Sample grouping of the study3:
Table 7: IPS e.max CAD combined crystallization and glazing cycle30
Table 8: Vita Suprinity crystallization cycle30
Table 9: Descriptive analysis of material weight loss53
Table 10: Paired t-test comparing material weight loss of each material54
Table 11: Descriptive analysis of enamel weight loss5!
Table 12: Paired t-test comparing enamel opposing each material weight loss 50
Table 13: Descriptive analysis of the increase in roughness before aging6
Table 14: Descriptive analysis of the increase in roughness after aging 6:
Table 15: Paired t-test comparing roughness within each material before and afte
aging62
Table 16: Descriptive analysis of the biaxial flexural strength of control and age
groups60
Table 17: Descriptive analysis of the biaxial flexural strength of control and age
groups6
Table 18: Independent t-test comparing roughness before and after aging of each
material68
Table 19: Lava Ultimate and corresponding enamel weights before and after aging
9!
Table 20: Vita Enamic and corresponding enamel weights before and after aging 9!
Table 21: Vita Suprinity and corresponding enamel weights before and after aging
90

Table 22: IPS e.max CAD and corresponding enamel weights before and after aging
96
Table 23: Roughness measurements (in um) of IPS e.max CAD before and after aging
97
Table 24: Roughness measurements (in um) of Lava Ultimate before and after aging
97
Table 25: Roughness measurements (in um) of Vita Enamic before and after aging
98
Table 26: Roughness measurements (in um) of Vita Suprinity before and after aging
98
Table 27: Maximum load (N) of Vita Suprinity and IPS e.max CAD before and after
<i>aging</i> 99
Table 28: Maximum load (N) of Vita Enamic and Lava Ultimate before and after
aging99

Introduction

Advancements are inevitable in all fields of science. The continuous search for better qualities and properties will never stop. As the advancements in dentistry continue, new materials and techniques are being introduced to the field to meet the increasing demand for superior esthetics and best physical properties ^(1, 2). The integration of the restoration with the biological tissues and the achievement of normal function are the goals that clinicians and technicians aspire to achieve in everyday dental practice ⁽³⁾.

Dental porcelain is the preferred material to replace natural tooth tissue in prosthetic dentistry owing to its properties of wear resistance, high strength, toughness and excellent esthetics are considered ⁽²⁾.

All ceramic restorations are being considered by dentists and patients to the point where these types of restorations are becoming the standard of care ⁽⁴⁾.

Several types of all ceramic systems have been developed to meet the increased demands of patients and dentists for highly esthetic, biocompatible, and long-lasting restorations ⁽⁵⁾. The development of high strength ceramics has led to the increased use of metal free restorations with higher mechanical characteristics compared to the early ceramic materials ⁽⁶⁾.

Parallel to the improvements in the material is the evolution of dental technologies such as Computer Aided Design / Computer Aided Manufacture (CAD/CAM). It serves to expand the restorative choices available for the dental patient. The strength, durability and biocompatibility of indirect restorations fabricated via CAD/CAM make them favorable for anterior and posterior indications.

With all improvements accomplished in the physical properties of ceramic blocks used, two main drawbacks of ceramics still exist. The chipping of the material in thin sections, either during the milling process or during checking and verification, caused by intrinsic brittleness of ceramic materials, and the high hardness relative to enamel resulting in wear of the opposing natural dentition. So there is a great need in determining which material is best in every clinical situation.

This has been a strong motivation for manufacturers to develop a new category of materials, called the hybrid ceramics, which combines strength and esthetics of ceramics and resilience and elasticity of composites.

Review of literature

Dental ceramics may be classified according to their application, fusion temperature, manufacture technique and crystalline phase ⁽⁷⁾. According to Kelly ⁽⁸⁾, there are two concepts behind the science of ceramics used in dentistry; the first concept includes three main groups: glass ceramic materials, particle-filled glasses and polycrystalline ceramics, and the second concept includes any combination of two or more of those groups

Glass ceramics:

Glass ceramics were introduced in the late 1950s. They are prepared by controlled crystallization of glasses ⁽⁹⁾. Crystallization was done by controlled heat treatment of glass to form nuclei of crystallization and crystal growth occurs. Various crystalline phases can nucleate and grow depending on the composition of glass ⁽¹⁰⁾.

Types of glass ceramics:

Mica-based:

Dicor (Dentsply Intc., York, PA) has tetrasilicic flouromica as the major crystalline phase. Lost wax technique or CAD/CAM milling out of prefabricated blanks can be used to fabricate restorations (11, 12).

Hydroxyapatite based:

Cerapearl (Kyocera, San Diego, CA) is a castable glass ceramic in which oxyapatite is the crystalline phase (13).

• Leucite-based:

Leucite reinforced glass ceramic is highly translucent and has a flexural strength of 100-150 MPa. Restorations are fabricated by lost wax technique or CAD/CAM milling from prefabricated blanks. IPS Empress (Ivoclar Vivadent, Liechtenstein) was introduced to the market and is indicated for veneers and single crowns in the anterior region (14-17).

Lithium disilicate:

A glass ceramic with a higher flexural strength (350 - 440 MPa), higher fracture toughness (2-3 MPa) and high thermal shock resistance due to the low thermal expansion was achieved by precipitating lithium disilicate (LiSi₂O₅), forming around 70% volume of the crystal content, which is higher than that of leucite materials. High temperature x-ray diffraction studies showed that before the growth of lithium disilicate crystals (LiSi₂O₅), both lithium meta-silicate (LiSiO₃) and crystobalite are formed during the crystallization process. The final microstructure comprises of highly interlocked lithium disilicate crystals of dimensions 5 mm length and 0.8 diameter. The presence of a thermal expansion mismatch between lithium disilicate crystals and the glass matrix result in indirect compressive stresses around the crystals, which helps in crack deflection and provides higher strength (18-21).

Lithium disilicate is a highly translucent material with a refractive index of 1.55 which is very close to that of the glass matrix which is 1.5 causing less light scattering and higher translucency (22, 23).

Lithium disilicate was announced in 1998 as IPS Empress II (Ivoclar Vivadent) a material that can be used in short fixed dental prostheses (FDPs)

in the anterior region and short span FDP with the second premolar as the posterior abutment. The restoration is made by the lost wax technique which involves the use of a pre-colored ingot that is heated and pressed into an empty mold inside the phosphate-bonded. This technique produces a restoration with good marginal adaptation with a mean fitting accuracy of posterior crowns amounted to less than 50 μ m ⁽²⁴⁾. In a 5-year prospective clinical study, the survival rate was found to be reaching 100% for posterior single crowns and 70% for 3-unit FDPs, in the anterior and premolar area ⁽²⁵⁾. For further esthetics it should be veneered with flouroapatite based veneering porcelain ^(19, 26-29).

IPS e.max was introduced in 2005 as an improved version of IPS Empress II for heat pressing (IPS e.max Press) and CAD/CAM machining (IPS e.max CAD).

The manufacturing process of IPS e.max CAD is based on glass technology (pressure casting technology) is used in the fabrication of the blocks. This novel method of manufacturing uses optimized processing parameters to prevent defects formation; like pores and pigment accumulation, in the bulk of the ceramic (30).

IPS e.max CAD blocks are produced with 40% platelet-shaped lithium metasilicate crystals in a glassy phase which is produced after an intermediate crystallization process to give a blue, translucent block. The color is controlled by the use of coloring ions but not fully oxidized (intermediate phase); thus a blue color is produced. The final crystallized state and desired tooth color is attained after milling by a final firing process in which lithium metasilicate transforms into lithium disilicate. The final state of IPS e.max CAD consists of 70% fine spindle shaped grains lithium disilicate crystals with a 360 MPa flexural strength (21, 30, 31).

Crystals of lithium meta-silicate, in the partially crystallized form, are responsible for good machining properties, moderate strength and good edge properties (31).

The two levels of translucency provided depend on the crystallization pretreatment. The low translucency (LT) blocks have a higher density of smaller crystals while the high translucency (HT) blocks contain fewer and larger crystals of lithium metasilicate in the pre-crystallized state (32).

Zirconia reinforced lithium silicate:

It was introduced in 2013 as a new class of glass ceramic material produced with a novel manufacturing process. It is reinforced with zirconia (approximately 10 % by weight) which provides excellent material quality and consistent high load capacity ⁽³³⁾.

The zirconia reinforced lithium silicate is produced in three stages; the first stage, which is the molding, the block is in a glass state, where it is very brittle and susceptible to fracture during machining. The second stage, the thermal pretreatment, is done to initiate crystal growth. At this stage the block exhibit ceramic properties, so it can be processed to form restorations. The third stage, final crystallization in a dental furnace, is done to give the material its final esthetic and physical properties ⁽³⁴⁾.

The presence of 10% zirconia dissolved into the lithium silicate glass matrix results in 4 times smaller silicate crystals, implying a high glass content and higher translucency than conventional lithium disilicate ceramics, it also gives the material a higher compressive strength reaching 540 MPa, thus it is indicated for anterior and posterior crowns, supra-structure on implants, veneers, inlays and onlays (33-35)