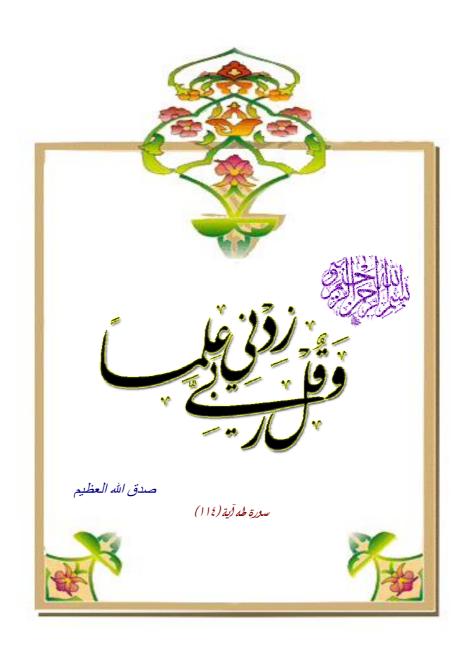
Assessment of Regional Left Atrial Deformation Properties at the Left Atrial Free Lateral Wall by Tissue Doppler Imaging in Mitral Valve Disease

Thesis

Submitted for partial fulfillment of the master degree in Cardiology

By: Sarah Ibrahim Mohamed Ali Halawa (M. B., B.Ch)

Supervised by


Prof. Dr. Mohamed Ismail

Assistant Professor of Cardiology Faculty of Medicine, Ain Shams University

Prof. Dr. Ahmed Mohamed Onsy

Assistant Professor of Cardiology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Mohamed Ismail,** Assistant Professor of Cardiology, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Ahmed Mohamed Onsy**, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University for his continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Sarah Ibrahim Mohamed Ali Halawa

Contents

List of Abbreviations List of Tables List of Figures	ii
Introduction and Aim of the Work	1
Review of Literature	4
Patients and Methods	85
Results	91
Discussion	134
Summary	139
Conclusion	143
Study Limitations	142
References	134
Arabic Summary	

List of Abbreviations

ANP : Atrial natriuretic peptides

Ar : Atrial reversal ASr : Atrial strain rate CW : Continuous wave

EROA : Effective regurgitant orifice area INR : International normalization ratio

LA : Left atrium

LV : Left ventricular

PALS : Peak atrial longitudinal strain

PMBV : Percutaneous mitral balloon valvuloplasty

PW : Pulse wave

RT3DE : Real time three dimensional

echocardiography

RV : Regurgitant volume

STE : Speckle tracking echocardiography

TDI : Tissue Doppler imaging

TVI : Time velocity integral VTI : Velocity-time integral

List of tables

Table	Title	Page
1	Gender distribution among study groups	92
2	The two subgroups of the study	93
3	Distribution of mitral valve disease in rheumatic group	94
4	Mitral regurgitation distribution among the mitral valve diseased group	95
5	The severity of mitral stenosis in rheumatic group	96
6	Subgroups of the study	97
7	Matched gender distribution among the two groups in the study	98
8	Age distribution among the two study groups	99
9	Description of heart rate among study groups	100
10	Description of systolic blood pressure among study groups	101
11	Description of the diastolic blood pressure among study groups	102
12	Description of end diastolic volume among study groups	103
13	Description of end systolic volume among study groups	103

List of tables (Cont.)

Table	Title	Page
14	Description of ejection fraction among study groups	105
15	Description of left atrial dimension among study group	106
16	Description of E-velocity measured by conventional echocardiography among study groups	107
17	Description of A-velocity measured by conventional echocardiography among study groups	108
18	Description of deceleration time among study groups	109
19	Description of E/A ratio by conventional echocardiography among study groups	110
20	Description of IVRT among study groups	111
21	The range of pressure gradient among mitral stenotic patients	112
22	The relationship between grade of mitral stenosis and mean pressure gradient and it shows significant increase in mean pressure gradient with the increase in the severity of the stenosis	112
23	Description of s-wave velocity among study groups	113
24	Description of e'-wave velocity among study groups	114
25	Description of a'-wave velocity among study groups	115

List of tables (Cont.)

Table	Title	Page
26	Description of E/A ratio measured by TDI among study groups	116
27	Comparison between study subgroups regarding their Echocardiographic parameters	117
28	Comparison between the demographic data of the study subgroups showing no significance	121
29	Comparison between the m-mode Echocardiographic data of the study subgroups	122
30	Comparison between the pulsed wave Doppler Echocardiographic parameters of the study subgroups	123
31	Comparison between the tissue Doppler imaging parameters of the study subgroups	124
32	Comparison between patient's subgroups (mitral regurgitation and mitral stenosis) regarding their Echocardiographic parameters	125
33	Comparison between the patients group to the normal group regarding their demographic and echocardiograpic data	127
34	Comparison between the Echocardiographic data of the mitral regurgitation subgroup according to the degree of mitral regurgitation	129
35	Correlation between the Echocardiographic data of mitral stenosis subgroup to the mitral valve area	131
36	Comparison between the Echocardiographic data of the mitral stenosis subgroup according to the severity of mitral stenosis	134

List of Figures

Fig.	Title	Page
1	Atria Viewed from above after removal of epicardium showing the circumferential muscle connecting the back	4
2	Anatomical Section showing nearly parallel arrangement of the pectinate muscles and show a variation with fan like arrangement and many criss cross branches	7
3	Measurement of peak atrial longitudinal strain (PALS) from apical two chambers View	11
4	Frank Starling curve Showing the change in LA volume with change in pressure	13
5	End systolic (Maximum) LA Volume from an elite athlete with volume index of 33 ml/m2	16
6	PW Doppler Recording of LV filling showing measurements of E wave deceleration time	22
7	Schematic representation of time left atrial volume and its measurement of LA volume. AVC = aortic valve closure; AVO = aortic valve opening; MVC = mitral valve closure; MVO = mitral valve opening	25
8	Normal Pulsed way TDI	26
9	Pattern of LA strain (top) and strain rate (bottom) in a normal Subject, TPLS, Time to Peal atrial longitudinal strain	28

List of Figures(Cont.)

List of Figures (Cont.)		
Fig.	Title	Page
10	Mitral regurgitation assessed by distal jet	39
	area method. Mitral regurgitation jet area	
	is traced (dashed line) and divided by	
	left atrial area (solid line)	
11	The vena contracta (arrows) of the mitral	41
	regurgitant jet	
12	Still image of flow convergence area	44
13	Assessing mitral valve area by pressure	57
	half time	
14	showing management of rheumatic	62
	mitral stenosis symptomatic and	
	asymptomatic patients	
15	Simultaneous tracings of pulmonary	66
	capillary wedge pressure and left	
	ventricular pressure in a patient with	
	mitral stenosis before valvuloplasty	
16	Pulmonary capillary wedge pressure and	67
	left ventricular pressure in the same	
	patient immediately after valvuloplasty	
17	Assessment of regional atrial myocardial	79
	function by tissue Doppler imaging	
18	Atrial pump function and	82
	electromechanical coupling in a healthy	
1.0	subject	
19	shows gender distribution among study	90
•	groups	0.1
20	shows the study population 50% normal	91
	individuals and 50% rheumatic mitral	
	valve diseased patients	0.7
21	Shows the mitral regurgitation grades	93
	distribution among the study groups	

List of Figures(Cont.)

Fig	Title	Paga
Fig.		Page
22	shows the distribution of mitral stenosis	94
	degree among mitral stenosis subgroup	
	(10% mild mitral stenosis, 70%	
	moderate mitral stenosis and 20% severe	
	mitral stenosis)	
23	Bar chart showing subgroups of the	95
	study	
24	Bar chart showing the matched gender	96
	among the two study groups	
25	Bar chart showing the age range among	97
	study groups	
26	Bar chart showing the range of heart rate	98
	among the two study groups	
27	Bar chart showing the range of systolic	99
	blood pressure among the two study	
	groups	
28	Bar chart showing the range of diastolic	100
	blood pressure among the two study	
	groups	
29	Bar chart showing the range of end	101
	diastolic volume among study groups	
30	Bar chart showing range of end systolic	102
	volume among study groups	
31	Bar chart showing the range of ejection	103
	fraction among study groups	
32	Bar chart showing significant increase in	104
	left atrial dimensions in mitral valve	
	diseased group	
33	Bar chart showing the range of E-	105
	velocity in the two study groups	
		

List of Figures(Cont.)

Fig.	Title	Page
34	Bar chart showing the range of A-	106
	velocity among the two study groups	
35	Bar chart showing the range of	107
	deceleration time among the two study	
	groups	
36	Bar chart showing the range of E/A ratio	108
	among the two study groups	
37	Bar chart showing the range of IVRT	109
	among the two study groups	
38	Bar chart showing increase in the mean	110
	pressure gradient with the increase in	
	mitral stenosis severity	
39	Bar chart showing the range of s-wave	111
	velocity among the two study groups	
40	Bar chart showing the range of e'-wave	112
	velocity among the two study groups	
41	Bar chart showing the range of a'-wave	113
	velocity among the two study groups	
42	Bar chart showing the range of E/A ratio	114
	measured by TDI among the two study	
	groups	
43	shows inverse relationship between	130
	mean pressure gradient and mitral valve	
	area	
44	shows inverse relationship between A-	131
	wave velocity and mitral valve area	

Introduction

Atrial function is an integral part for the proper performance of circulatory system, the assessment of its haemodynamic and mechanical characteristics by use of non-invasive echocardiography, including tissue Doppler velocity, may provide a better insight into atrial function ^[1].

The haemodynamic function of the left atrium (LA) primarily modulates the left ventricular (LV) filling through its three components: a reservoir component during ventricular systole, a conduit component during early ventricular diastole, and a booster pump component during late ventricular diastole. The change of the LA function in different phases can be assessed non-invasively by echocardiography, using not only conventional methods such as changes in LA area and volume, but also novel techniques such as tissue Doppler imaging (TDI).

Tissue Doppler imaging quantifies regional tissue motion velocity; this novel technique has been validated for the assessment of both global and regional left atrium and left ventricle function ^[2].

From an electromechanical perspective, echocardiographic Parameters that assess LA mechanical function may provide a greater understanding of atrial performance and its relationship with ventricular function [2].

Doppler echocardiography relies on detection of the shift in frequency of ultrasound signals reflected from moving objects. With this principle, conventional Doppler techniques assess the velocity of blood flow by measuring high-frequency, low-amplitude signals from small, fast-moving blood cells.

Introduction and Aim of the Work

In TDI, the same Doppler principles are used to quantify the higher-amplitude, lower-velocity signals of myocardial tissue motion TDI can be performed in pulsed-wave and color modes. Pulsed-wave TDI is used to measure peak myocardial velocities and is particularly well suited to the measurement of long-axis ventricular motion because the longitudinally oriented endocardial fibers are most parallel to the ultrasound beam in the apical views ^[3].

Pulsed wave tissue Doppler can assess the left atrial wall as it generates a triphasic signal formed by positive A_1 wave and two negative A_2 and A_3 waves.

The left atrial flow and Transmitral indicate that the A_1 component of the atrial wall occurs during ventricular systole and corresponds to the atrial relaxation period , this wave could be due to the movement of the mitral ring during the ventricular systole toward the base of the left atrial wall, the A_2 wave is produced during early diastolic filling (the passive phase of ventricular filling) and the A_3 wave coincides with the atrial contraction (left ventricular or active filling) $^{[4]}$.

Aim of the Work

This study is taken for the assessment of left atrial lateral free wall deformation properties in mitral valve disease using tissue Doppler imaging.