Adiponectin and Resistin as a noninvasive predictor for the severity of non-alcoholic fatty liver disease

Thesis

Submitted for fulfillment of master degree In Internal Medicine

Presented by

Ahmed Abd-Allah Salman (M.B.B.Ch)

Supervised by

Prof. Dr. / SOHEIR A. ABO-ELFADL

Professor of Internal Medicine Faculty of Medicine Cairo University

Dr. / MONA A. HEGAZY

Assistant Professor of Internal Medicine Faculty of Medicine Cairo University

Dr. / LAILA A. RASHED

Assistant Professor of Medical Biochemistry Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

ACKNOWLEDGEMENT

First and foremost thanks to (ALLAH) who is the most beneficial and most merciful.

Words are not enough to express my great thanks and deep appreciation to **Prof. Dr. Soheir Abo El-fadl,** Professor of Internal Medicine, Faculty of Medicine, Cairo University, for her keen supervision, generous cooperation, great help and encouragement to finish this work.

It is a great pleasure to express my profound gratitude and deep thanks to **Dr. Mona Hegazy**, Assistant Professor of Internal Medicine, Faculty of Medicine, Cairo University, for her effort, comments, ideas, constructive criticism and support throughout this thesis.

I wish to express my gratitude to **Dr. Laila Rashed**, Assistant Professor of Medical Biochemistry, Faculty of Medicine, Cairo University, for her careful supervision, valuable cooperation and encouragement.

I am thankful to **Dr. Abeer Mostafa**, Lecturer of pathology, National Cancer Institute, Cairo University, for her support and encouragement to finish this work.

A very special thank to all my family for their support and encouragement throughout this work.

Finally great thanks to all members and staff of Internal Medicine Department, Faculty of Medicine, Cairo University for the great facilities provided to finish this work. **Abstract:** Fatty liver is a common condition increasingly detected by routine abdominal ultrasound.

The aim of the study is to investigate adiponectin and resistin as non-invasive predictors of NAFLD.

Subjects & Methods: Fifty four obese patients (BMI above 30), with suspected fatty liver by abdominal ultrasound were subjected to the following: Full history taking and physical examination, full anthropometric measurements, laboratory studies including serum adiponectin and resistin, abdominal US, and sonar-guided liver biopsy "for pathological examination and measuring adiponetin and resistin gene expression". Also fifteen agematched healthy non-obese subjects were included as a control group for serum adiponectin & resistin. According to the results of biopsy, patients were subdivided into NASH group (46 patients) and non-NASH group (8 patients), and the 2 groups were compared as regards different parameters.

Results: Showed significantly lower levels of adiponectin & higher levels of resistin in NAFLD patients compared to control subjects. Also they showed lower levels of adiponectin & higher levels of resistin in the NASH group than the non-NASH group (but the difference was not significant). Serum AST, ALT, AAR, and GGT were higher in NASH than non-NASH group. Abdominal US showed a high sensitivity in the diagnosis of NAFLD.

Conclusion: Adiponectin and resistin can be combined in further studies with other noninvasive markers to predict the presence of NASH in order to replace liver biopsy.

Keyworsd: NAFLD, Obesity, Adiponectin, Resistin

Contents

•	List of Abb	previations		IV
•	List of Tab	oles		VII
•	List of Fig	ures		IX
•	Introduction	n and Aim of work		1
•	Review of	Literature		
	>	Anatomy and phys	siology of the liver	2
	>	Non-alcoholic fatty	liver disease	8
	>	Adipocytokines	- Adiponectin	36
			- Resistin	50
	>	New dilemma in di	agnosis of NAFLD	58
•	Subjects an	d Methods		71
•	Results			84
•	Discussion			109
•	Conclusion	ı		118
•	Summary			119
•	Recommen	dations		121
•	References			122
•	Arabic sum	nmary		

List of abbreviations

AAR	AST/ALT ratio.	
ACO	Acetyl CO-A	
ALP	Alkaline Phosphatase.	
ALT	Alanine Aminotransferase.	
AMPK	AMP-Activated Kinase.	
ANGPTL3	Angiopoietin-like Protein 3	
ApoBl00	Apolipoprotein B100.	
APPL1	Adaptor Protein containing Pleckstrin homology domain.	
APRI	Aspartate Aminotransferase to Platelet Ratio Index.	
ARFI	Acoustic Radiation Force Impulse.	
ASH	Alcoholic Steatohepatitis.	
AST	Aspartate aminotransferase.	
AUC	Area Under the Curve.	
AUROC	Area Under the Receiver Operating Curve.	
BMI	Body Mass Index.	
C2CI4	Perchloroethylene.	
CAP	Controlled Attenuation Parameter.	
CCI4	Carbon tetrachloride.	
CK-18	CytoKeratin-18.	
CLD	Chronic Liver Disease.	
CREBP	Carbohydrate Response Element Binding Protein.	
CRP	C-Reactive Protein.	
CT	Computed Tomography.	
CVD	Cardiovascular disease.	
DNA	Deoxy Ribonucleic Acid	
DPI	Doppler Perfusion Index	
ELF	Enhanced Liver Fibrosis.	
ELISA	Enzyme Linked Immuno-Sorbent Assay.	
ER	Endoplasmic Reticulum.	
EtBr	Ethyl Bromide.	
FBS	Fasting Blood Sugar.	
FLI	Fatty Liver Index.	
G6pase	Glucose-6-phosphatase.	
Gck	Glucokinase.	
GFR	Glomular Filteration Rate	
GGT	Gamma Glutamyl Transferase.	
HA	Hyaluronic Acid.	

HAART	Highly Active Antiretroviral Drugs.	
HBsAg	Hepatitis B Surface Antigen.	
HCVAb	Hepatitis C Virus Antibody.	
HDL-C	High Density Lipoprotein Cholesterol.	
HMW	High Molecular Weight.	
HOMA	Homeostasis Model Assessment .	
HSCs	Hepatic Stellate Cells.	
HU	Hounsefield Unit	
ICAM-1	Intercellular Adhesion Molecule-1.	
IL	Interleukin.	
IU	International Unit.	
IV	Intra Venous.	
KDa	KiloDalton	
Kg	Kilogram	
LDL-C	Low Density Lipoprotein-Cholesterol.	
LPS	LipoPolySaccharides.	
MCP-1	Monocyte Chemoattractant Protein-1.	
mL	Milliliter.	
mm	Millimeter.	
MRC	Mitochondrial Respiratory Chain.	
MRI	Magnetic Resonance Imaging.	
mRNA	Messenger Ribonucleic Acid.	
MRS	Magnetic Resonance Spectoroscopy.	
MS	Metabolic Syndrome.	
NAFLD	Non Alcoholic Fatty Liver Disease.	
NAS	NAFLD Activity Score.	
NASH	Non Alcoholic Steatohepatitis.	
NASH CRN	Nonalcoholic Steatohepatitis Clinical Research Network.	
NCEP ATP-III	National Cholesterol Education Program: Adult Treatment	
	Program IΠ	
NEFA	Non-Esterified Fatty Acids.	
NFS	NAFLD Fibrosis Score.	
ng	Nanogram.	
nm	Nanometer	
NNFL	Non-NASH Fatty Liver.	
NPV	Negative Predictive Value.	
NT	Nash Test.	
OELF	Original European Liver Fibrosis.	
OSA	Obstructive Sleep Apnea.	

P3NP	Procollagen III N-peptide.	
PCR	Polymerase Chain Reaction.	
PDGF	Platelet Derived Growth Factor.	
PEPCK1	PhosphoEnolPyruvateCarboxyKinase 1.	
pm	Picomole.	
PPARs	Peroxisomal Proliferator Activated Receptors.	
PPV	Positive Predictive Value.	
PTX 3	Plasma Pentraxin 3.	
qPCR	Quantitative Real Time PCR.	
REC	Research Ethical Committee.	
RNA	Ribonucleic Acid.	
RNS	Reactive Nitrogen Species.	
ROS	Reactive Oxygen Species.	
RT-PCR	Reverse Transcriptase- Polymerase Chain Reaction.	
SD	Standard Deviation.	
SPEA	Serum prolidase enzyme activity.	
sRAGE	Soluble Receptor for Advanced Glycation Endproducts.	
SREBP	Sterol Regulatory Element Binding Protein.	
ST	SteatoTest.	
TG	Triglycerides.	
TIMP 1	Tissue-Inhibited matrix Metalloproteinase Inhibitor-1.	
TNF	Tumor Necrosis Factor.	
TZD	Thiazolidinediones.	
U/L	Unit/Liter.	
UCP2	Uncoupling protein 2	
UDCA	Ursodeoxycholic Acid.	
ULN	Upper Limit of Normal.	
US	UltraSonography.	
USA	United States of America.	
VCTE	Vibration Control Transient Elastography.	
VEGF	Vascular Endothelial Growth Factor.	
VLDL	Very Low-Density Lipoprotein	
μL	Micro Liter.	
μΜ	Micro Meter	

List of Tables

Table No.	Subject	Page No.		
	Tables of Review			
2-1	Secondary non-alcoholic fatty liver disease	12		
2-2	Working classification of non-alcoholic fatty liver disease	13		
2-3	Metabolic syndrome components	15		
2-4	Key sites of insulin resistance	16		
4-1	Different imaging modalities in NAFLD diagnosis	70		
5-1	Components of NAS and Fibrosis Scoring System	76		
5-2	DNA master mix	80		
5-3	Primer sequence of adiponectin and resistin receptors	82		
	Tables of Results			
1	Anthropometric measures of the studied patients	84		
2	Laboratory data of the studied patients	85		
3	Serum adiponectin and resistin in both studied and control groups	86		
4	Adiponectin and resisitin gene expression in liver biopsy of the studied patients	86		
5	Grades of liver steatosis by ultrasound in the studied patients	87		
6	Subcutaneous adipose tissue measured by abdominal ultrasound in the studied patients	87		
7	Grades of liver steatosis by liver biopsy in the studied patients	88		

Table No.	Subject	Page No.
8	Comparison between NASH & non-NASH groups as regards anthropometric measurements	88
9	Comparison between NASH & non-NASH groups as regards laboratory data	90
10	Comparison between NASH & non-NASH groups as regards adiponectin and resisitin levels in blood and their gene expression in liver biopsy	91
11	Correlation between grades of steatosis in liver ultrasound and liver biopsy	92
12	Comparison between NASH & non-NASH groups as regards sonar-measured subcutaneous adipose tissue	92

List of Figures

Figure No.	Subject	Page	
Figures of Review			
1-1	Anatomy of the liver	3	
2-1	Working classification of non-alcoholic fatty liver disease	13	
3-1	Physiological roles of adiponectin receptors	40	
3-2	Lipostat theory	42	
3-3	Effect of high fat diet on adiponectin-induced AMPK	43	
3-4	Adiponectin serves as a starvation gene	44	
3-5	Effects of hypoadiponectinemia	45	
	Figures of Results		
1	Comparison between control & NAFLD patients as regards serum adiponectin& resistin levels	95	
2	Correlation between ultrasonic staging of steatosis & steatosis in liver biopsy	96	
3	Correlation between ultrasonic staging of steatosis & adiponectin receptor gene expression	97	
4	Correlation between serum ALT& NASH score in liver biopsy	98	
5	Serum ALT in both studied groups	99	
6	Serum AST in both studied groups	100	
7	AST/ALT ratio in both studied groups	101	
8	Serum GGT in both studied groups	102	
9	Serum adiponectin in both studied groups	103	

Figure No.	Subject	Page
10	Adiponectin receptor gene expression in both studied groups	114
11	Resistin serum level in both studied groups	115
12	Resistin receptor gene expression in both studied groups	116
13	ROC curve for ALT	117
14	ROC curve for GGT	118

Introduction

Fatty liver is a common condition increasingly detected by routine abdominal ultrasound. Non- alcoholic steatohepatitis (NASH) is not rare and it is predicted to become one of the most common liver diseases (Matteoni et al., 1999). Liver biopsy represents the best diagnostic test for staging liver steatosis, inflammation and fibrosis, but medical and ethical considerations limit its use in subjects with non progressive fatty liver conditions (Angelico et al., 2003). Measuring serum adiponectin and resistin may serve as predictors of progressive liver pathology in NAFLD. Adiponectin is an insulin sensitizing adipokine possessing multiple beneficial effects on obesity-related medical complications and low level of this adipokine represents an independent risk factor for NAFLD (Jiang et al., 2009). Resistin is an adipocytokine whose physiologic role has been the subject of much controversy regarding its involvement with obesity and type 2 diabetes mellitus (Steppan et al., 2001).

Aim of the work

The aim of this work is to evaluate the use of serum adiponectin and resistin as a non invasive diagnostic test of fatty liver disease. This study will be conducted on 54 obese patients (BMI above 30kg/m^2) who will be subjected to: Full anthropometric measurements, full clinical examination, labs (FBS, total lipid profile, liver enzymes, HBsAg & HCVAb, serum adiponectin and resistin), abdominal ultrasound, and sonar-guided liver biopsy "for pathological examination and measuring adiponectin & resistin receptor gene expression". In addition we included 15 age-matched non-obese subjects as a control group to measure adiponectin & resitin serum level.

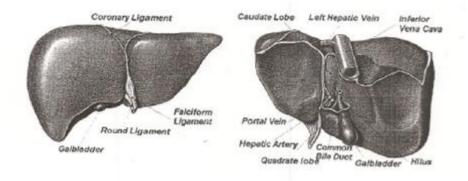
Chapter 1

(Anatomy and physiology of the liver)

The liver is among the most complex and important organs in the human body. Its primary function is to control the flow and safety of substances absorbed from the digestive system before distribution of these substances to the systemic circulatory system. A total loss of liver function leads to death within minutes, demonstrating the liver's importance (Marieb., 2001).

General description of the Liver:

The liver, the largest organ in the body, weighs 1200- 1500 gm and comprises one-fiftieth of the total adult body weight. It is relatively larger in infancy, comprising one eighteenth of the birth weight. This mainly due to a large left lobe. It occupies a large region mostly on the right side of the body, below the diaphragm and behind the ribs 5 through 10 (**Leftkowitch.**, **2011**).


The liver has many functions, primarily including:

- Acting as a gatekeeper between the digestive system and the circulatory system.
- Processing toxic substances before they enter general circulation.
- Storing and converting nutrients for future use.
- Synthesizing most plasma proteins.
- Secreting bile into small intestine to break down fats (Marieb., 2001).

Gross Anatomy:

The liver is divided into four lobes which are right, left, caudate, and quadrate. The right and left lobes are the largest, while the caudate and

quadrate are smaller and located posteriorly. Superiorly, the falciform ligament separates the right and left lobes. Inferior to the falciform ligament is the round ligament, which protrudes from the liver slightly. Also visible anteriorly on the most inferior portion of the right lobe is the gall bladder. The caudate lobe is located superiorly, approximately between the right and left lobes. Adjacent to the caudate lobe is the sulcus for the inferior vena cava. Just inferior to the caudate lobe is the porta hepatis, where the hepatic artery and hepatic portal vein enter the liver. The portal vein carries nutrient laden blood from the digestive system. Inferior to the porta hepatis is the bile duct which leads back to the gallbladder. Finally, the hepatic vein, where post-processed blood leaves the liver, is found inferior and adjacent to the sulcus for the inferior vena cava. The liver is held on place by a system of mesenteries posteriorly, and is also attached to the diaphragm via the falciform ligament. Additionally, most of the liver is covered by visceral peritoneum (Heuman., 1997).

(Figure 1-1): Anatomy of the liver (Heuman., 1997).

Microscopic anatomy:

The basic functional unit of the liver is the liver lobule. A single lobule is about the size of a sesame seed and is roughly hexagonal in shape. The primary structures in a lobule include:

• Plates of hepatocytes form the bulk of the lobule

- Portal triads at each corner of hexagon
- Central vein
- Liver sinusoids that run from the central vein to the portal triads
- Hepatic macrophages (Kupffer cells)
- Bile canaliculi ("little canals") formed between walls of adjacent hepatocytes
- Space of Disse a small space between the sinusoids and the hepatocytes

The portal triads consist of three vessels: a hepatic portal arteriole, hepatic portal venule, and a bile duct. The blood from the arteriole and the venule both flow in the same direction through the sinusoids toward the central vein, which eventually leads to the hepatic vein and the inferior vena cava. Secreted bile flows in the opposite direction through the bile canaliculi away from the central vein, toward the portal triad, and exiting via the bile duct. As blood flows through the sinusoids and the space of Disse toward the central vein, nutrients are processed and stored by the hepatocytes. Moreover, worn out blood cells and bacteria are engulfed by the Kupffer cells (Stevens et al., 1997).

Interrelationships with other organs:

The liver interacts with many other organs.

- Following the flow of blood, the liver receives its arterial blood supply from the hepatic arteries. The hepatic arteries originate from abdominal aorta distal to the celiac trunk. Thus the liver receives its oxygenated blood supply from the heart.
- Nutrient laden blood from the digestive system and blood leaving the spleen enters the liver through the hepatic portal vein. Processed blood leaving the liver through the hepatic