EFFECT OF CERTAIN VERTEBRATE HORMONES AND PLANT EXTRACTS ON BIOLOGICAL AND ECONOMICAL CHARACTERS OF MULBERRY SILKWORM, Bombyx mori L.

By

TAHIA AZOOZ FOUAD

B.Sc. Agric. Sci. (Agric. Production), Fac. Agric., Cairo Univ., 1999 M.Sc. Agric. Sci.(Economic Entomology), Fac. Agric., Cairo Univ., 2008

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Economic Entomology)

Department of Economic Entomology and Pesticides
Faculty of Agriculture
Cairo University
EGYPT

2015

APPROVAL SHEET

EFFECT OF CERTAIN VERTEBRATE HORMONES AND PLANT EXTRACTS ON BIOLOGICAL AND ECONOMICAL CHARACTERS OF MULBERRY SILKWORM, Bombyx mori L.

Ph.D. Thesis
In
Agric. Sci. (Economic Entomology)

By

TAHIA AZOOZ FOUAD

B. Sc. Agric. Sci. (Agric. Production), Fac. Agric., Cairo Univ., 1999 M.Sc. Agric. Sci.(Economic Entomology), Fac. Agric., Cairo Univ., 2008

APPROVAL COMMITTEE

	LI IBRAHIM ELKARAKSYarch of Sericulture, Plant Prot. Res. Inst., Agric.
EL BRAMONY	SAYED MOHAMMED SAYED AHMAD ic Entomology, Fac. Agric., Cairo University

Dr. IBTISAM ABDEL-MONEIM HEMEIDA

Emeritus Professor of Economic Entomology, Fac. Agric., Cairo University

Date: / /2015

SUPERVISION SHEET

EFFECT OF CERTAIN VERTEBRATE HORMONES AND PLANT EXTRACTS ON BIOLOGICAL AND ECONOMICAL CHARACTERS OF MULBERRY SILKWORM, Bombyx mori L.

Ph.D. Thesis
In
Agricultural Sci. (Economic Entomology)

 $\mathbf{B}\mathbf{v}$

TAHIA AZOOZ FOUAD

B. Sc. Agric. Sci. (Agric. Production), Fac. Agric., Cairo Univ., 1999 M.Sc. Agric. Sci.(Economic Entomology), Fac. Agric., Cairo Univ., 2008

SUPERVISION COMMITTEE

Dr. IBTISAM ABDEL-MONEIM HEMEIDA

Emeritus Professor of Economic Entomology, Fac. Agric., Cairo University

Dr. HANAN MOHAMED ABD-ELSAMAD HAMADA Lecturer of Economic Entomology, Fac. Agric., Cairo University

Dr. Usama Mohamad Mohamad Ghazy Head Research of Sericulture, Plant Prot. Res. Inst., Agric. Res. Center

Dr. MOHAMMAD AHMAD EID (Late)
Professor of Economic Entomology, Fac. Agric., Cairo University

Name of Candidate: Tahia Azooz Fouad Ahmad Degree: Ph. D.

Title of Thesis: Effect of Certain Vertebrate Hormones and Plant Extracts on

Biological and Economical Characters of Mulberry Silkworm,

Bombyx mori L.

Supervisors: Dr. Ibtisam Abdeel-Moneim Hemeida

Dr. Hanan Mohamed Abd-Elsamad Hamada Dr. Usama Mohamad Mohamad Ghazy

Dr. Mohammad Ahmad Eid (Late)

Department: Economic Entomology and Pesticides

Branch: Economic Entomology **Approval:** //2015

ABSTRACT

The present work aimed to study the effect of some vertebrate hormones and plant extracts on the egg parameters and encourage silkworm moths to increase the number of laid eggs, as well as economic characters of the silkworm, *Bombyx mori* L.

The obtained data revealed that, treatments with vertebrate hormones enhanced traits for the number of unfertilized eggs, number of fertilized eggs, number of unlaid eggs, fecundity, fertility, coefficient of unlaid eggs and hatchability.

In addition, vertebrate hormones increased the coefficient of laid eggs parameter. The increment range from 13,905 up to 34.550% for spraying application and ranged from 17.149 up to 34.605% for dipping application.

Also, using vertebrate hormones improved the economic characters of fresh cocoon weights, cocoon shell weight and cocoon shell ratio.

Using plant extracts *Ginseng* and *Achillea* improved the number of unfertilized eggs, number of fertilized eggs, number of unlaid eggs, fecundity, fertility, coefficient of unlaid eggs and hatchability.

Coefficient of laid eggs parameter was improved. The increment rate for spraying applications ranged from 16.787 to 35.011% for *Ginseng* and *Achillea* treatments. For dipping application it ranged from 18.659 to 34.773% % for *Ginseng* and *Achillea* extracts.

Also, using plant extracts *Ginseng* and *Achillea* enhancing traits of fresh cocoon and cocoon shell weight, cocoon shell ratio, the silk reelable filament length, weight and silk size.

Key words: Vertebrate hormones, plant extracts, mulberry silkworm, *Bombyx mori*, egg parameters, biological parameters, economic characters, technological parameters.

ACKNOWLEDGEMENT

Thanks are fully due to God, most gracious, most merciful, for being able to complete this work.

It is great pleasure to express my deepest gratitude and appreciation to **Dr. M. A. Eid,** Professor of Economic Entomology, Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University for encourage me to complete my studies on silkworm and continue my work in sericulture department, interest and advice he gave me in the choice this studies (God's mercy).

Also, I wish to express my deep gratitude to **Dr. S. A.S.El- Maasarawy,** Professor of Economic Entomology, Department of
Economic Entomology and Pesticides, Faculty of Agriculture,
Cairo University, for his direct supervision, constructive criticism
and helpful assistance. (God's mercy)

My greatest gratitude and whole thanks to **Dr. Ibtisam Abdel- Moneim Hemeida**, Professor of Economic Entomology,

Department of Economic Entomology and Pesticides, Faculty of

Agriculture, Cairo University, for her help to complete the

finishing of this study.

Wholehearted thanks are due to **Dr. Hanan Mohamed**AbdEl-Samad Hamada Lecturer of Economic Entomology,

Department of Economic Entomology and Pesticides, Faculty of

Agriculture, Cairo University, for her advices and helpful assistance as well as generous help to complete this work.

Sincere appreciation and deep thanks to **Dr. Usama M.M. Ghazy,** Director of Sericulture Research Department, Plant

Protection Research Institute, Agricultural Research Center for

his valuable guidance, sincere supervision and unlimited help

during the experimental work and preparation of this manuscript.

Grateful appreciation is also extended to all staff members in the

Sericulture Department, Plant Protection Research Institute,

Agricultural Research Center.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Factors affecting egg productivity	
2. Vertebrate hormones	•
3. Plant extracts	
MATERIAL AND METHODS	
RESULTS AND DISCUSSION	
1. Effect of vertebrate hormones of testosterone and	
progesterone on some parameters of silkworm larvae B.	
mori L	
a. Egg parameters	
(1) Number of unfertilized eggs	••••
(2) Number of fertilized eggs	
(3) Number of unlaid eggs	
(4) Fecundity	
(5) Fertility percentage	
(6) Coefficient of laid eggs	
(7) Coefficient of unlaid eggs	
(8) Hatchability percentage	
b. Economic parameters	
(1) Fresh cocoon weight	
(2) Cocoon shell weight	
(3) Cocoon shell ratio	
c. Technological characters	
(1) Length of silk filament	
(2) Weight of silk filament	
(3) Size of silk filament (Denier)	
2. Effect of Ginseng and Achillea extracts on some parameter	ters
of silkworm larvae, Bombyx mori L	
a. Egg parameters	
(1) Number of unfertilized eggs	
(2) Number of fertilized eggs	••••
(3) Number of unlaid eggs	
(4) Fecundity	
(5) Fertility percentage	

CONTENTS (continued)

(6) Coefficient of laid eggs
(7) Coefficient of unlaid eggs
(8) Hatchability percentage
b. Economic parameters
(1) Fresh cocoon weight
(2) Cocoon shell weight
(3) Cocoon shell ratio
c. Technological characters
(1) Length of silk filament
(2) Weight of silk filament
(3) Size of silk filament (Denier)
Conclusion
SUMMARY
REFERENCES
ARABIC SUMMARY
· AAM AAPA O

LIST OF TABLES

No.	Title	Pag
1.	Effect of vertebrate hormones testosterone and progesterone on the number of unfertilized eggs during two Spring seasons.	3'
2.	Effect of vertebrate hormones testosterone and progesterone on the number of unfertilized eggs during two Autumn seasons.	4(
3.	Effect of vertebrate hormones testosterone and progesterone on the number of fertilized eggs during two Spring seasons	42
4.	Effect of vertebrate hormones testosterone and progesterone on the number of fertilized eggs during two Autumn seasons	4
5.	Effect of vertebrate hormones testosterone and progesterone on the number of unlaid eggs during two Spring seasons	40
6.	Effect of vertebrate hormones testosterone and progesterone on the number of unlaid eggs during two Autumn seasons.	4
7.	Effect of vertebrate hormones testosterone and progesterone on the fecundity character during two Spring seasons	5
8.	Effect of vertebrate hormones testosterone and progesterone on the fecundity character during two Autumn seasons	5
9.	Effect of vertebrate hormones testosterone and progesterone on the fertility percentage during two Spring seasons	5
10.	Effect of vertebrate hormones testosterone and progesterone on the fertility percentage during two Autumn seasons.	5

1.	Effect of vertebrate hormones testosterone and progesterone on the Coefficient of laid eggs (%) during two Spring seasons
2.	Effect of vertebrate hormones testosterone and progesterone on the Coefficient of laid eggs (%) during two Autumn seasons
3.	Effect of vertebrate hormones testosterone and progesterone on the Coefficient of unlaid eggs (%) during two Spring seasons
4.	Effect of vertebrate hormones testosterone and progesterone on the Coefficient of unlaid eggs (%) during two Autumn seasons
5.	Effect of vertebrate hormones testosterone and progesterone on the hatchability percentage during two Spring seasons.
6.	Effect of vertebrate hormones testosterone and progesterone on the hatchability percentage during two Autumn seasons
7.	Effect of vertebrate hormones testosterone and progesterone on fresh cocoon weight (gm) during two Spring seasons.
3.	Effect of vertebrate hormones testosterone and progesterone on fresh cocoon weight (gm) during two Autumn seasons
) .	Effect of vertebrate hormones testosterone and progesterone on the cocoon shell weight (gm) during two Spring seasons
).	Effect of vertebrate hormones testosterone and progesterone on the cocoon shell weight (gm) during two Autumn seasons
1.	Effect of vertebrate hormones testosterone and progesterone on the cocoon shell ratio (%) during two Spring seasons

22.	Effect of vertebrate hormones testosterone and progesterone on the cocoon shell ratio (%) during two Autumn seasons.
23.	Effect of vertebrate hormones testosterone and progesterone on the length of silk filament (m) during two Spring seasons.
24.	Effect of vertebrate hormones testosterone and progesterone on the length of silk filament (m) during two Autumn seasons.
25.	Effect of vertebrate hormones testosterone and progesterone on the filament weight (gm) during two Spring seasons.
26.	Effect of vertebrate hormones testosterone and progesterone on the filament weight (gm) during two Autumn seasons.
27.	Effect of vertebrate hormones testosterone and progesterone on the filament size (denier) during two Spring seasons.
28.	Effect of vertebrate hormones testosterone and progesterone on the filament size (denier) during two Autumn seasons.
29.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of unfertilized eggs during two Spring seasons
30.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of unfertilized eggs during two Autumn seasons.
31.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of fertilized eggs during two Spring seasons
32.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of fertilized eggs during two Autumn seasons.
33.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of unlaid eggs during two Spring seasons

34.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the number of unlaid eggs during two Spring seasons	112
35.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the fecundity character during two Spring seasons	114
36.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the fecundity character during two Spring seasons	110
37.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the fertility percentage during two Spring seasons	120
38.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the fertility percentage during two Spring seasons	122
39.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the Coefficient of laid eggs (%) during two Spring seasons	124
40.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the Coefficient of laid eggs (%) during two Autumn seasons	120
41.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the Coefficient of unlaid eggs (%) during two Spring seasons.	128
42.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the Coefficient of unlaid eggs (%) during two Autumn seasons	13:
43.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the hatchability percentage during two Spring Seasons	133
44.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the hatchability percentage during two Autumn Seasons	136
45.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on fresh cocoon weight (gm) during two Spring seasons	138
46.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on fresh cocoon weight (gm) during two Atumn seasons	140
47.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the cocoon shell weight (gm) during two Spring seasons	143
48.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the cocoon shell weight (gm) during two Autumn seasons	144

49.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the cocoon shell ratio (%) during two Spring seasons	147
50.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the cocoon shell ratio (%) during two Autumn seasons	150
51.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the length of silk filament (m) during two Spring seasons	152
52.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the length of silk filament (m) during two Autumn seasons	153
53.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the filament weight (gm) during two Spring seasons	157
54.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the filament weight (gm) during two Autumn seasons	159
55	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the filament size (denier) during two Spring seasons	163
56.	Effect of plant extracts <i>Ginseng</i> and <i>Achillea</i> on the filament size (denier) during two Autumn seasons	164

INTRODUCTION

The silkworm, *Bombyx mori* L. is a monophagous insect that feeds only on mulberry leaves. The silkworm growth, development and metamorphosis are controlled by hormonal regulation.

Silk originating in the spittle of the silkworm larvae is a natural fibrous substance and is obtained from pupal nests or cocoons. The silk is preferred over all other types of fibres due to its remarkable properties like water absorbency, heath resistance, dyeing efficiency, and luster (Fenemore and Parkash, 1992; Ahmed and Muzaffar, 1987).

Silkworm breeding aims to achieve better performance for egg yield, cocoon & raw silk yield, cocoon crop reliability, cocoon and raw silk quality. Hybrids of three or four crossings are often used in order to overcome the high mortality and poor fecundity of the component pure lines for a hybrid (Anonymous, 1993).

A number of factors and events govern successful egg deposition, the principle ones being neural, hormonal, chemical, environmental, physical and behavrioural factors which include mating, vitellogensis, ovulation and oviposition, however, it is in the last stage that the substratum plays an important role in deciding the total number of eggs that will be laid where a suitable substratum encourages the female to deposit all the eggs formed in the ovarian follicles, while unsuitable one dissuades complete egg laying (Nangia and Ramakumar, 1997). It is a well Known fact that silkworm moths lays around 58 - 65 % of all eggs formed in the ovaries while a percentage

of 35 - 42 % of the eggs are not laid which is considered a great loss of egg yield (El-sayed *et al.* 1996; Hugar *et al.* 1997 and El-Hattab, 2002).

Fecundity and fertility of the *Bombyx mori* L. female are two major factors in silk industry because these are directly correlated with silk-production Faruki, 2005. The increased level of estradiol in the haemolymph of larvae treated topically with a vertebrate sex steroid indicated effective penetration of this hormone through the larval cuticle Keshan and Ray, 2000.

Recently, the use of vertebrate hormones to enhance the commercial characters of the mulberry silkworm, *Bombyx mori* L., has taken a great turn. (Saha and Khan, 1997).

Testosterone is a hormone responsible for many of the physical characteristics specific to adult males. It plays a key role in reproduction and the maintenance of bone and muscle strength. It produced by the gonads (Leydig cells in testes in men and by the ovaries in women), although small quantities are also produced by the adrenal glands in both sexes. It is an androgen, meaning that it stimulates the development of male characteristics. Present in much greater levels in men than women, testosterone initiates the development of the male internal and external reproductive organs during foetal development and is essential for the production of sperm in adult life. This hormone also signals the body to make new blood cells, ensures that muscles and bones stay strong during and after puberty and enhances libido both in men and women (Mason , 2004).