

AIN SHAMS university

Faculty of Medicine.

.

Choice of Ventilator Strategy for Different Patients

Essay

Submitted For Partial Fulfillment For M.SC. Degree In Intensive Care

BY

Haidy Waheeb Fahmi Eskander

(M.B.B.CH., Mansoura University)

Supervised by

Prof. dr. Madiha Metwaly Zidan

Professor of Anesthesia and Intensive Care. Faculty of Medicine. AIN SHAMS university.

Dr. Diaa Abd El Khalek Akl

Assistant professor of Anesthesia and Intensive Care. Faculty of Medicine. AIN SHAMS university.

Dr. Fady Adib Abd El Malek

Lecturer of Anesthesia and Intensive Care. Faculty of Medicine. AIN SHAMS university.

2014

Acknowledgment

First of all , I thank ALLAH For granting me the power to proceed and to accomplish this essay.

No word can express my endless gratitude and appreciation to **Prof.Dr. Madiha Metwaly Zidan**, Professor of Anasthesia and Intensive Care, Faculty of Medicine, Ain Shams University for giving me the honor of working under the supervision and providing me with alot of encouragement and support. My great thanks and appreciation to **Assist.Prof.Dr. Diaa Abd Elkhalk Akl**, Assistat professor of Anasthasia and Intensive Care, Faculty of Medicine, Ain Shams University for his great support.

Thanks to **Dr.Fady Adib Abd El Malk**, Lecturer of Anasthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his great support , patience and Fruitful comments.

Last but not the least, I would like to express my greatest thanks and gratitude to my beloved family.

Haidy Waheeb Fahmi

CONTENT

	page
Introduction	1-2
Aim of the work	3
Chapter 1: Respiratory mechanics	4-18
Chapter2: Modes of Mechanical Ventilation	19-59
Chapter3: Ventilator Strategy for	
a- Obstructive lung disease	60-77
b- Restrictive lung disease	78-92
c- Traumatic brain Injury	93-102
Chapter4: Weaning From Mechanical Ventilation	103-136
Summary	137-139
Referances	140-169
Arabic Summary	7_1

List of figure

	page
Figure 1: Lung volumes and capacities.	9
Figure 2: Pressure volume curve.	12
Figure 3: Inflammation in the airways of asthmatic patients leading to airway hyper responsiveness and symptoms.	
Figure 4: Pathophysiology of asthma showing participation of several interacting inflammatory cells and resulting in acute and chronic inflammatory effects on the airway.	62

List of table

	Page
Table 1: Causes of decreased intrathoracic compliance.	13
Table2: Differences in parameters between volumetargeted and pressure-targeted ventilator modes.	24
Table3:Initial ventilator settings for the intubated asthmatic patient.	72

Abbrevation

A/C	assist/control mode ventilation
ALI	acute lung injury
APC	adaptive pressure control
APRV	Airway pressure-release ventilation
ARDS	acute respiratory distress syndrome
ARF	Acute Respiratory Failure
ASV	Adaptive support ventilation
ATC	automatic tube compensation
BIPAP	biphasic positive airway pressure
С	Compliance
CBV	cerebral blood volume
Ccw	compliances of chest wall
Cdyn	the dynamic compliance
Cl	compliances of lung
CMV	controlled mandatory ventilation
CPAP	Continuous Positive Airway Pressure
СРР	cerebral perfusion pressure
Crs	compliances of the respiratory system
EAdi	electrical activity of the diaphragm
ECMO	Extracorporeal membrane oxygenation
EPAP	expiratory positive airway pressure
FEFx	forced expiratory flow

FEV ₁	Forced expiratory volume in one second
FiO ₂	fraction of inspired oxygen
FVC	Forced vital capacity
GCS	Glasgow Score
HFOV	High-frequency oscillatory ventilation
ICP	intracranial pressure
IMV	intermittent mandatory ventilation
iNO	Inhaled nitric oxide
IPAP	inspiratory positive airway pressure
IRV	Inverse ratio ventilation
ITP	intra thoracic pressure
MAP	mean arterial pressure
MEFx	Maximum expiratory flow
MIP or	The maximal inspiratory pressure
PImax	
MOF	Multiple Organ Failure
NAVA	Neural adjusted ventilator assist
NIV	noninvasive ventilation
NMBAs	Neuromuscular blocking agents
NPPV	Noninvasive positive pressure ventilation
OLDs	obstructive lung diseases
PaCO ₂	Arterial CO ₂ tension
PaO ₂	arterial oxygen tension
PAV	proportional assist ventilation

PC	Pressure control mode		
PEA	pulseless electrical activity		
PEEP	Positive End Expiratory Pressure		
PEF	Peak expiratory flow		
PEF	peak expiratory flow		
PH	Pulmonary hypertension		
PL-IRV	pressure-limited ventilation inverse ratio		
	ventilation		
PS	Pressure support		
RICUs	Respiratory intermediate care units		
RSBI	The rapid shallow breathing index		
SBTs	Spontaneous breathing trials		
SIMV	synchronized intermittent mandatory		
	ventilation		
SpO ₂	oxyhemoglobin saturation		
TNF	Tumor Necrosis Factor		
TV	Tidal Volume		
VAP	Ventilator Associated pneumonia		
VC	Vital capacity		
VL-IRV	volume-limited ventilation inverse ratio		
	ventilation		
WCs	weaning centers		
WOB	work of breathing		

Introduction

Respiratory gas exchange is limited by the ability of the respiratory muscles to ventilate the lungs, and ventilation fails when the muscles cannot cope with the load imposed by the mechanics of the pulmonary system. It is important to understand the mechanics of breathing, not only to diagnose how the system has failed, and prescribe the correct treatment for the failure, but also to be able to provide the most effective temporary respiratory support using a mechanical ventilator (**Polese et al.,2012**).

There are many methods by which the patient and ventilator interact to perform the ventilatory cycle. These variable techniques are called modes of mechanical ventilation. They are volume targeted modes and pressure-targeted modes (Bozyk et al., 2010).

New modes of ventilation promote better oxygenation and faster weaning and be easier to use (Eduardo et al., 2009).

The physiology of patients with obstructive lung disease exacerbations presents a unique and complex challenge when these patients are placed on mechanical ventilation. Therefore, ventilator strategies that reduce hyperinflation are crucial (**Lougheed et al.,2006**).