

Ain Shams University Faculty of Science Chemistry Department

"Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives"

A Thesis submitted by

Eman Mohammed Kamal Abo Hussein

M.Sc. in Chemistry- 2012

Chemistry Department, Faculty of Science, Menoufia University.

To

Chemistry Department, Faculty of Science, Ain Shams University.

For

Ph.D Degree in Inorganic Radiation Chemistry.

2014

Ain Shams University Faculty of Science Chemistry Department

"Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives"

Thesis Supervisors

Signature

Prof. Dr. Ebtissam Ahmed Saad

Prof. of Inorganic Chemistry-

Faculty of Science -Ain -Shams University.

Prof. Dr. Nagia Abd El Hamid El – Alialy

Prof. of Radiation Chemistry-National Center

for Radiation Research and Technology (NCRRT)

-Atomic Energy Authority.

Head of Chemistry Department Prof. Dr. Hamed Ahmed Derbala

DEDICATION TO

ALLAH

The most Merciful, who blessed my effort, showed me the way and provided me with power to present this work in an acceptable form.

My Beloved Husband "Mohammed"

My Lovely Daughters:

My Father

My Mother

My Brothers "Ahmed and Mahmoud"

My Sister "Noha"

Deep Gratefulness

For

Their Patience, Kind Support and Continuous Encouragement

During The Whole Time Of The Work.

Eman Mohamed kamal Abou Hussien

Acknowledgment

I wish to express my sincere appreciation and gratitude to Prof. Dr. Nagia Abd El Hamid El-Alaily (Professor of Radiation chemistry, at Radiation Chemistry Department National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo) for suggesting the research point of this thesis, providing all work facilities, for all supports, understanding, for constructive criticism on thesis during writing and generous help throughout the progress of this study without which this work would never have been completed.

Also I want to thank **Prof. Dr. Ebtissam Ahmed Saad** (Professor of inorganic Chemistry at Chemistry Department, Faculty of Science, Ain -Shams University) for continuous encouragement and generous help and revising the thesis.

Thank you all for making me able to get this thesis done. I will always be your grateful student.

I am also indebted with gratitude to **Prof. Dr. Fatthy Mahmoud Ezz-Eldin** (Professor of Radiation Chemistry,

National Center for Radiation Research and Technology

(NCRRT), Atomic Energy Authority, Cairo) and **Dr. Wesam**Abd Allah (Doctor of Radiation Chemistry, National Center
for Radiation Research and Technology (NCRRT), Atomic
Energy Authority, Cairo) for continuous guidance and
infinite help during every stage in this project. Their
encouragement was truly the instrumental to my success.

I wish to express my deep thanks to my colleagues and my best friends in the Faculty of Science, (Ghada, Nehad Fattma and Shimaa)

Also, I would like to thank all my friends in Atomic Energy Authority at, National center for radiation Research and technology ,Due to their never-ending help and support during my study (Dr. Sayeda, Dr. Mona, Dr. Shimaa, Dr. Mohamed, Dina, Omniya, and Soria).

Finally, I am deeply grateful to all of my other friends and any person helped me scientifically and personally to overcome difficulties I faced in my work.

Eman Mohamed kamal Abou Hussein

SRS.A.

الجمعية المصرية للعلوم الإشعاعية و تطبيقاتها مشهرة برقم 7288 مشهرة برقم 83/31

مبلة التقنيات النووية في العلوم التطبيقية

Journal of Nuclear Technology in Applied Science (JNTAS)

ACCEPTANCE OF PUBLICATION

Date: 18/05/2014

Paper Entitled:

Study of using certain composition of bismuth silicate glass and glass ceramic for gamma radiation processing

Author(s):

Mansour, A.; Abou-Hussien, E. M.; Ebtisam A. Saad and ElAlaily, N.A.

Dear Author:

I have the pleasure to inform you that your above-mentioned paper received at 15/04/2014 has been reviewed and accepted for publication in **JNTAS.** You will be contacted in due time to collect your article reprints.

Thanking you for your co-operation and looking forward for future publications.

Sincerely Yours, Editor-In-Chief.

Prof. Dr. / Hedayat-Allah Salem

LIST OF CONTENTS	Page
LIST OF CONTENTS	i
LIST OF TABLES	viii
LIST OF FIGURES	ix
ABSTRACT	xiv
AIM OF THE WORK	xvi
CHAPTER (I): Introduction	1
I.1. History of glass	1
I.2. Glass manufacture and its applications	2
I.3. Definition of glass	3
I.3.1. Morey 1954 definition	4
I.3.2. Shelby, 1997 definition	4
I.4. The structure of glass	5
I.5. Chemical composition of glass	5
I.5.1. Glass formers	6
I.5.2. Glass fluxes	6
I.6. Classification of glass components	7
I.6.1. Glass forming oxides	7
I.6.2.Glass modifying oxides	7
I.6.3. Glass intermediate oxides	8
I.7. Bridging and non-bridging oxygens	8
I.8. The characterization of the structure nature of silicate glasses	10
I.9. Glass- ceramic materials	12
I.9.1. Nucleation	13

I.9.2. Glass forming ability and glass stability	13
I.10. Glass- ceramic properties	14
I.11. Crystallization behavior in glasses	15
I.12. Gamma irradiation	18
I.13. Effect of radiation on inorganic solids	18
I.14. Effect of radiation on glass	20
I.14.1. Ionizing radiation	21
I.14.2. Particle radiation	22
I.14.3. Radiolytic damage mechanism	22
I.14.4. Trapping sites	23
I.15. Density	24
I.16. Microhardness	25
I.16.1. Definition of microhardness	26
I.16.2. Factors affecting the Vicker's microhardness	
number	28
I.17. Chemical durability	28
I.17. Chemical durability I.17.1. Definition of Chemical Durability of Glass	28 28
	28
I.17.1. Definition of Chemical Durability of Glass	
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous	28
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion)	28
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism	28 29 29
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism I.17.2.2. Etching Mechanism	28 29 29 31
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism I.17.2.2. Etching Mechanism I.17.3. Factors affecting glass durability	28 29 29 31 33
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism I.17.2.2. Etching Mechanism I.17.3. Factors affecting glass durability I.17.3.1. Environmental factors	28 29 29 31 33 33
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism I.17.2.2. Etching Mechanism I.17.3. Factors affecting glass durability I.17.3.1. Environmental factors I.17.3.2. Physical factors	29 29 31 33 33 35
I.17.1. Definition of Chemical Durability of Glass I.17.2. Reactions of glass with water (Aqueous corrosion) I.17.2.1. Leaching Mechanism I.17.2.2. Etching Mechanism I.17.3. Factors affecting glass durability I.17.3.1. Environmental factors I.17.3.2. Physical factors 1.17.3.3. Specimen state	29 29 31 33 33 35

I.19.1. Optical band gap and band tail	39
I.20. Fourier transform infrared spectroscopy (FT-IR)	41
I.20.1. The IR spectra are important for many reasons	44
I.20.2. Advantages of FT-IR spectroscopy	46
I.20.3. Typical method for measurement	48
I.21. Electron Spin Resonance "EPR"	50
I.22. Electrical conductivity	53
I.22.1. Effect of temperature on electrical conductivity of glass	54
I.22.2. Effect of type of metal oxide on electrical conductivity of glass	55
I.22.3. Effect of radiation on electrical conductivity of glass	56
I.23. General properties and applications bismuth silicate glasses	56
1.24. Bismuth containing glasses can be used as gamma ray shielding materials	59
Chapter (II): Literature Review	62
Structure of silicate glasses	62
Bismuthate Glasses	71
CHAPTER (III): Materials and Experimental Methods	90
III. Materials and Experimental Methods	90
III.1. Preparation of glass and heat treated glass samples	90
III.1.1. Preparation of Glasses	90
III.1.2. Preparation of corresponding heat treated glasses	92

III.2. Physical, chemical and mechanical	
measurements	93
III.2.1. Density measurements	93
III.2.2. Micro hardness measurements	93
III.2.3. Chemical durability measurements	94
III.2.4. Scanning electron microscope (SEM)	95
III.2.5. Differential thermal analysis (DTA)	95
III.2.6. X-ray Diffraction measurements (XRD)	95
III.2.7. Gamma irradiation procedure	96
III.2.8. Infrared transmission spectra	97
III.2.9. Electron Paramagnetic Resonance (EPR)	97
III.2.10. UV optical absorption spectra	98
III.2.11. Electrical Conductivity measurements	99
CHAPTER (IV): Results	100
IV.1. Density	100
IV.2. Microhardness	102
IV.3. Differential Thermal Analysis "DTA"	105
IV.4. X-Ray Diffraction "XRD"	107
IV.5. Infrared optical transmission spectra "IR"	116
IV.6. Ultra Violet optical absorption spectra "UV"	128
IV.6.1.Optical absorption spectra before and after	
gamma irradiation	128
IV.6.2. Optical energy gap before and after gamma	
irradiation	133
IV.7. Electrical Conductivity "E.C"	141
IV.8. Electron Paramagnetic Resonance "EPR "	155
IV.9. Chemical durability measurements	169

IV.10. Scanning Electron Microscopic investigations	
"SEM"	171
CHAPTER (V): Discussion	177
V.1. Density	177
V.1.1. Effect of composition on density of bismuth silicate glasses	178
V.1.2. Effect of addition of heavy metal oxides on the density of bismuth silicate glasses	179
V.1.3. Effect of gamma irradiation on density of bismuth silicate glasses and heat treated glasses	182
V.1.4. Effect of heat treatment on the density of bismuth silicate glasses	183
V.2. Microhardness	185
V.2.1. Interpretation of the microhardness	185
V.2.2. Microhardness in relation to glass composition	186
V.2.3. Effect of irradiation on microhardness	189
V.2.4. Effect of heat treatment on microhardness	190
V.3. Differential Thermal Analysis "DTA"	192
V.4. X-Ray Diffraction "XRD"	193
V.4.1. Crystallization of glass	193
V.5. Fourier Transform Infrared (FT-IR) spectroscopy	195
V.5.1.The constitution of bismuth silicate glass	196
V.5.2. Effect of composition on infrared transmission spectra	198
V.5.2. (a) Effect of addition of lead oxide	199
V.5.2. (b) Effect of addition of BaO and SrO	199
V.5.3. Effect of gamma irradiation on infrared transmission spectra	200

V.5.4. Effect of heat treatment on infrared spectra	202
V.6. Ultra-Violet absorption spectra "UV"	206
V.6.1. The origin of UV-near visible absorption spectrum in bismuth silicate glasses	206
V.6.2. Effect of the presence of different heavy metals on UV spectra	208
V.6.3. Effect of gamma irradiation on the optical absorption of the studied glasses	208
V.6.4. Optical band gap	210
V.6.5. Effect of composition on the optical band gap energy $(Eopt)$	211
V.6.6. Effect of gamma irradiation on the direct & indirect Eopt values for glass and heat treated glass	214
V.7. Electrical Conductivity	215
V.7.1. Effect of temperature on the electrical conductivity of bismuth silicate glasses	217
V.7.2. Effect of composition on the electrical conductivity of bismuth silicate glasses	218
V.7.3. Effect of irradiation on the electrical conductivity of bismuth silicate glasses	220
V.7.4. Effect of heat treatment on the electrical conductivity of bismuth silicate glasses	222
V.8. Electron Paramagnetic Resonance spectroscopy (EPR)	224
V.8.1. Effect of composition on EPR spectra of bismuth silicate glasses	226
V.8.2. Effect of irradiation on EPR spectra of bismuth silicate glasses.	227
V.8.3. Effect of heat treatment on EPR spectra of bismuth silicate glasses	228
V.9. Chemical durability	230