

The Role of Whole-Body MRI Examination in Oncological and Non-Oncological Diseases

Essay

Submitted for Partial Fulfillment of Master Degree in Radio Diagnosis

Presented by **Abdo Abdelnasser Abdeltawab Hassan**

M.B.B.Ch

Under Supervision of

Prof. Dr. Abeer Maghawry Abdelhameed

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Prof. Dr. Omnia Ahmed Kamal

Professor of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Dr. Ahmed Mohammed Mahmoud Abd Rabbou

Lecturer of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2014

First and foremost, I am always indebted to God, the most kind and merciful.

I would like to express my special thanks deep gratitude to **Prof. Dr. Abeer Maghawry Abdelhameed**Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams
University for her unfailing patience, tolerance, generosity, persistent effort, and for her outstanding humbleness that parallels her invaluable knowledge.

I would like to express my warm appreciation and cardinal thanks to **Prof. Dr. Omnia Ahmed Kamal** Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her valuable guidance and meticulous revision of the work.

I also express my great appreciation Dr. Ahmed Mohammed Mahmoud Abd Rabbou, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University for his cooperation and help.

I would also like to express my special thanks to my mother, father, brothers, sisters and dear friends for their support and help.

CONTENTS

TITLE	PAGE
List of Abbreviations	I
List of Tables	IV
List of Figures	V
Introduction and Aim of the Work	1
⇒ Physical and technical principles of whole-body MRI	4
Manifestations of WB-MRI in oncological diseases	55
Manifestations of WB-MRI in non- oncological diseases	102
⇒ PET-MRI	160
Summary	167
References	173
Arabic Summary	1

LIST OF ABBREVIATIONS

Abb.	Full term
ADC	Apparent diffusion coefficient
AngioSURF	Angiographic System for Unlimited Rolling
	Field-of background body signal suppression
ВН	Breath hold
CAD	Computed aided diagnosis
CPSs	Cancer predisposing syndromes
CRMO	Chronic recurrent multifocal osteomyelitis
СТ	Computed tomography
DCE	Dynamic contrast enhanced
DWI	Diffusion-weighted imaging
DWIBS	DWI with background body signal suppression
EPI	Echo planar imaging
FDG	Fluorodeoxyglucose
FISP	Fast imaging with steady procession
FLAIR	Fluid attenuated inversion recovery
FLASH	Fast low angle shot
FOV	field of view
FS	Fat saturated
FS	Fat saturation
GRE	Gradient echo
JDM	Juvenile dermatomyositis
LCH	Langerhans cell histiocytosis

Abb.	Full term
MBH	Multi breath hold
MDS	Move During Scan
MIBG	Metaiodobenzylguanidine
MIPs	Maximum intensity projections
MPGs	Motion probing gradients
MPNSTs	Malignant peripheral nerve sheath tumors
MPRs	Multiplanar reformats
MRA	Magnetic resonance angiography
MRI	Magnetic resonance imaging
MS-CT	Multislice computed tomography
NF1	Neurofibromatosis 1
NHL	Non-Hodgkin lymphoma
NPS	Neonatal progeroid syndrome
PACS system	Picture archiving and communication system
PAT	Parallel imaging acquisition technique
PD	Proton density
PET	Positron emission tomography
RF	radiofrequency
SAR	specific absorption rate
SE	Spin echo
SKIP	Stepping Kinematic Imaging Platform
SNR	signal to noise
STIR	Short Tau Inversion Recovery
T	Tesla

List of Abbreviations

Abb.	Full term
TE	Echo time
TIM	Total imaging matrix
TIRM	Turbo Inversion Recovery Magnitude
TSE	Turbo spin echo
US	ultrasonography
VIBE	Volumetric interpolated breath-hold
	examination
WB-DWI	Whole body diffusion weighted imaging
WB-MRI	whole body magnetic resonance imaging

LIST OF TABLES

No	Content	Page
1	Recommended parameters for VIBE imaging	27
2	Exemplary MRI sequence combinations	33
	(modules) applicable within a whole-body	
	MRI examination for assessing body parts	
3	WB-MRI protocol for systemic diabetes	141
	imaging on a 32-receiver channel whole-body	
	scanner at 1.5 T with the use of total body	
	matrix technology and PI	
4	WB-MRI protocol in children with	143
	osteochondroma (1.5 T) with four	
	examination regions.	

LIST OF FIGURES

No	Title	Page
1	Magnetic field homogeneity. Coronal MR image with a large FOV (50 cm) to demonstrate the effect of the magnetic field homogeneity of the main magnet	6
2	Modern 1.5 Tesla whole-body MR scanner with cylindrical design	8
3	Gradient non-linearity. Coronal MR images with a large FOV	9
4	Dedicated peripheral "phased-array" RF surface coil for the acquisition of multistation MR angiography (MRA) examinations of the pelvis leg vasculature	14
5	AngioSURF table platform mounted on the examination table of a Siemens Sonata MR scanner with a patient lying on top	16
6	Schematic representation of "Tim" (Total imaging matrix) RF technology	17
7	Contrast-enhanced peripheral MRA (A) compared with the "Move During Scan" (MDS) technique (B), with which continuous data acquisition takes place during patient table movement	21
8	Schematic representation of a longitudinal section through a cylindrical short magnet	24
9	The axial source data of the VIBE sequence from the head, thorax, pelvis, and thigh can also be presented in coronal or sagittal orientation using multiplanar reconstruction as a result of the three-dimensional character	28
10	Desktop areas of prototype post-processing software for whole-body MRI	31
11	Composite whole-body short tau inversion-recovery image in a child with Langerhans cell histiocytosis	35
12	Healthy 32-year-old male volunteer. Coronal MR images were obtained showing normal skeleton and viscera	36
13	Whole-body MRI T1 weighted imaging of a 60-year-old man	37

No	Title	Page
14	5-year-old boy with stage II nodular sclerosing Hodgkin disease. Coronal whole-body	43
15	Comparison of 18F-FDG PET and DWI in 69-year-old-woman with pathologically proven stage IA endometrial carcinoma. coronal maximum-intensity-projection color-scale 18F-FDG PET	45
16	Head and chest" station coronal short tau inversion-recovery (STIR) image	46
17	Another child with neuroblastoma with suspicion of marrow involvement on the short tau inversion- recovery sequence	47
18	Whole-body MRA is suitable not only for the evaluation of the vessel status of the patient with clinical symptoms of peripheral arterial occlusive disease, but it can also be applied as part of a screening examination for patients with an elevated risk of arterial vascular bed diseases	49
19	Whole-body 3D MRA obtained in a 63-year-old man with PVD	50
20	A 60-year-old patient with a malignant melanoma	57
21	Halo sign in thyroid metastases	58
22	Halo sign in tiny metastases from prostate cancer	59
23	Images obtained from a 68-year-old woman with breast cancer	61
24	Bone scintigram (posterior view, left side) and corresponding STIR and opposed-phase 2D Fast low angle shot (FLASH) images of a patient with breast cancer	63
25	68-year-old woman who presented with back pain 4 years after resection of rectal squamous cell tumor	64
26	35-year-old man with biopsy-proven laryngeal carcinoma	65
27	A 45-year-old female with breast cancer	66
28	A 57-year-old female patient with diagnosis of a malignant melanoma	67
29	A 58-year-old male patient with non-small cell lung	68

No	Title	Page
30	Localized knee magnetic resonance imaging illustrating a focal island of residual red marrow within the distal femoral metaphysis of an 11-year-old	72
31	Neuroblastoma. Coronal T1 "abdominal station" image from a whole-body magnetic resonance imaging	78
32	Langerhans cell histiocytosis. Composite whole-body coronal short tau inversion-recovery	82
33	Neurofibromatosis. Unstitched coronal short tau inversion-recovery images from a whole-body magnetic resonance imaging study of the pelvis	84
34	16-year-old girl who presented 4 years after resection of lower limb osteo-sarcoma	88
35	A 70-year-old man with multiple myeloma	88
36	52-year-old man with back pain	93
37	Scan from a 15-year-old boy with stage II nodular sclerosing Hodgkin's lymphoma. Coronal whole-body	94
38	Scan from a 40-year-old woman with stage IV nodular sclerosing Hodgkin's lymphoma. Coronal whole-body	95
39	Comparison of 18F-FDG PET and DWI in 78-year-old man with pathologically proven stage TA urothelial cell carcinoma of urinary bladder. Coronal maximum-intensity projection color-scale 18F-FDG PET	99
40	17-year-old girl with lymphoma, WB-MRI following chemotherapy	102
41	Multiple sites of osteonecrosis around the shoulder, hip, knee and ankle joints	104
42	12-year-old girl with progressive swelling of the left clavicular region without elevated inflammatory blood values	106
43	Twelve-year-old girl with chronic knee and back pain.	107
44	Three stations of a WB-MRI in TIRM sequence in a patient with CRMO	107
45	Selected coronal STIR images show hyperintense signal in the bone marrow of lateral ribs on the left, of posterior ribs bilaterally and increased signal in the surrounding soft tissue	109
46	Comparison (a) initial chest radiograph; (b) coronal STIR image: (c) follow-up chest radiograph	110

No	Title	Page
47	A 3-month-old abused boy was brought to the emergency department with facial bruises and multiple fractures	112
48	Six-year-old-girl with symmetrical erythematous cutaneous lesions	114
49	MRI examinations during disease(JDM) course	116
50	Rheumatoid arthritis. Acute infiltration of the lower cervical spine and the AC joint left; ankle joint right. Secondary result: Total hip replacement right; spondylosis L4/5	120
51	Ankylosing spondylitis. Infiltration of the mid cervical spine, iliosacral joint, ankle joint – non-acute; Secondary result: slight local metal artifacts due to total hip replacement bilaterally	122
52	Polyarthrosis clarification. Whole-body MRI with detection of arthrosis in both knee joints and of the left AC joint; osteochondrosis of the L-spine	124
53	Images obtained in a 67-year-old man with a history of PVD	129
54	Examples of pathologic data sets with (a) atherosclerotic changes and (b) Marfans syndrome	130
55	Contrast-enhanced peripheral MRA acquired with the multistation technique	131
56	A 17-year-old boy with Marfan syndrome	133
57	A 6-month-old boy with Loeys-Dietz syndrome. Contrast enhanced WB-MRA shows dilation and tortuosity of the vertebral (arrows) and internal carotid arteries, as well as the descending thoracic aorta (dotted arrow) on frontal maximum intensity projection image	135
58	A 4-year-old boy with Loeys-Dietz syndrome	136
59	A 4-month-old girl with Kawasaki disease	137
60	An 8-year-old girl with Takayasu arteritis	138
61	A 6-year-old girl with Takyasu arteritis who underwent serial contrast-enhanced WB-MRA	139
62	WB-MR exam of a 70-year-old male patient with type-2 diabetes for 33 years	142

List of Figures

No	Title	Page
63	A 35-year-old man with multiple cartilaginous exostoses	144
64	20-year-old woman with morphea	147
65	A 45-year-old female patient presented with diplopia, generalized weakness, and intermittent low-grade fever	149
66	A 50-year-old female patient presented with fever and mild abdominal pain	150
67	A 14-year-old female patient presented with backache and intermittent low-grade fever	151
68	17-year-old boy with multiple hemangiomas (Blue Rubber Bleb Nevus Syndrome)	153
69	13-year-old boy with a Klippel-Trenaunay-Weber-Syndrom (angiodysplasia)	154
70	32-year-old male presented with large lymphatic malformation of the right leg	155
71	WB-MRI for depiction of generalized hemangiomatosis	156
72	Extensive lymphatic malformation. "Torso" station image from coronal WB T2 magnetic resonance imaging	157
73	Post-mortem virtual autopsy using WB-MRI in a 2-month infant with hypoxic ischemic brain injury	159
74	PET-CT and PET-MRI of-71-y-old woman with fronto-basal meningioma in olfactory region	161
75	Abdominal unenhanced 18F-FDG PET-CT and MRI of 55-y-old woman with ovarian cancer	162
76	28-year-old man with multiple myeloma who underwent MRI-PET for follow-up after 2 months of chemotherapy	164

Introduction

The introduction of whole-body magnetic resonance imaging (WB-MRI) has profoundly changed the diagnostic concepts for various systemic diseases. In clinical practice, whole-body imaging is increasingly being used as a routine alternative to incremental, multimodal diagnostic imaging, particularly for comprehensive evaluation of malignant diseases. Whole-body MRI achieves comprehensive imaging from head to toe in one single examination. Therefore, in common with PET-CT, WB-MRI seems in principal well suited to take the place of the current, often time consuming multimodal diagnosis of diseases with systemic or multilocular manifestations (*Schmidt et al.*, 2010).

Whole-body MRI is increasingly used in the field of oncologic imaging as an adjunct or alternative to established multi-modality approaches (e.g., radiographs, MS-CT, ultrasound, scintigraphy) for initial tumor staging or screening for tumor recurrence after curative therapy. Promising results have been reported for the detection of distant metastatic disease, especially in tumors that frequently metastasize to the bone, liver, and brain (*Antoch et al., 2004*).

The use of WB-MRI appears promising in high-risk populations such as patients with diabetes mellitus, rheumatic

diseases, or primary benign bone tumors with potential for malignant transformation. Several studies have shown that WB-MRI is capable of high accuracy both in the staging of various tumor entities and in demonstrating or excluding recurrence. Especially metastases in the liver, the skeleton, and the CNS are demonstrated with greater accuracy than can be achieved with other imaging procedures. Because the bone marrow is imaged directly by MRI and often displays diffuse or multilocular involvement in multiple myeloma, WB-MRI is particularly sensitive to this disease; its findings are important for the prognosis and play a substantial role in therapeutic decision making. MRI has therefore been incorporated into the staging system for multiple myeloma (Schmidt et al., 2010).

Whole-body PET-MRI will be of particular medical importance because systemic disorders such as cardiovascular disease and cancer increasingly account for morbidity and mortality. Therapeutic success with these chronic and often incurable diseases is linked to early diagnosis, accurate staging, and therapy monitoring. This requires repeated whole-body assessment of the extent of the disease, relapses, complications, and concomitant diseases. Clinical studies comparing 18F-FDG PET-CT and whole-body MRI indicate that therapeutically relevant information is frequently obtained by PET or MRI but not necessarily by CT (*Pfannenberg et al.*, 2007).

Aim of Work

The aim of the study is to evaluate the role of whole body MRI in assessment of various oncological and non-oncological diseases.