Regional Anesthesia in Children; Beyond the Caudal Block

An essay submitted for the fulfillment of Masters Degree in Anesthesiology

Presented by

Islam Hassan Abdelfattah Hamad

M.B.B.CH Faculty of Medicine - Ain Shams University

Under the Supervision of

Prof. Dr. Amr Essam El-Din El-Hennami

Professor of Anesthesiology & Intensive Care Faculty of Medicine - Ain Shams University

Dr. Heba Bahaa El-Din El-Serwi

Assistant Professor of Anesthesiology & Intensive Care Faculty of Medicine - Ain Shams University

Dr. Hany Magdy Fahim

Lecturer of Anesthesiology & Intensive Care Faculty of Medicine - Ain Shams University

Firstly, thanks to **ALLAH**, Who gave me the power to finish this work.

I would like to express my deepest gratitude to **Prof. Dr. Amr Essam El-Din El-Hennami,** Professor of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University, for his continuous support, valuable assistance and best supervision. I really have the honor to complete this work under his supervision.

Many thanks and gratitude to **Dr. Heba Bahaa El- Din El-Serwi**, Assistant Professor of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University, for the great guidance and valuable direction in all stages of this study.

I would like to express my sincere thanks and deepest appreciation to **Dr. Hany Magdy Fahim**, Lecturer of Anesthesiology & Intensive Care, Faculty of Medicine - Ain Shams University, for his great support and guidance.

List of Contents

Subject Page No.
List of Abbreviationsi
List of Tablesiv
List of Figuresv
Introduction
Aim of the Work ٤
Chapter (1): Physiological Differences between Pediatrics and Adults as Regard Regional Anesthesia
Chapter (*): Pharmacology of Local Anesthetics
Chapter (*): Central Neuraxial Block in Pediatrics
Chapter (4): Peripheral Nerve Block in Pediatrics 50
Summary97
References 99
Arabic Summary

List of Abbreviations

Abbr.	Full-term
ASIS	Anterior Superior Iliac Spine
AAG	α\-Acid Glycoprotein
Cmax	Peak Plasma Concentration
CNS	Central Nervous System
CSF	Cerebrospinal Fluid
ECG	Electrocardiogram
EDTA	Ethylenediaminetetraacetic Acid
EMLA	Eutectic Mixture of Local Anesthetics
ENT	Ear, Nose and Throat
GA	General Anesthesia
HAS	Human Serum Albumin
IVRA	Intravenous Regional Anesthesia
LAs	Local Anesthetics
LOR	Loss of Resistance
LOS	Length of Stay
MEGX	Monoethylglycinexylidide
PABA	Para-aminobenzoate
RA	Regional Anesthesia
Tmax	Time to Reach Peak Plasma Concentration
TRI	Transient radicular irritation

List of Tables

Table No. Title	Page No
-----------------	---------

Table ('):	Main physiologic factors in the pediatric period that can influence the selection or	
	action performance of a regional block procedure.	٧
Table (۲):	Lipid solubility and relative potency	۱۳
Table (٣):	pKa and onset of action	١٤
Table (٤):	Duration of action and protein binding	10
Table (°):	Recommended doses and approximate duration of action of commonly used local anesthetic agents Adapted from	۲۳
Table (٦):	Maximum recommended doses and approximate duration of action of commonly used local anesthetic agents.	۲۳
Table (Y):	Usual Doses and Infusion Regimens for Epidural Anesthesia in Pediatric Patients	٤٤

List of Figures

Figure No.	Title	Page	No.
Figure (1):	Mechanism of action of local ane		
Figure ([†]):	Structural domains of local an agents.		
Figure (*):	Positioning an infant for spina placement		
Figure (٤):	Spinal block being placed in an in	fant	۳٧
Figure (°):	Epidural block procedures		٣٩
Figure (٦):	Upper extremity peripheral innervations with the arm supinate		
Figure (Y):	Upper extremity peripheral innervations with the arm Pronate		
Figure (^):	Axillary approaches to the liplexus.		
Figure (4):	Infraclavicular approaches to the plexus		
Figure (' ·):	Parascalene approach to the plexus		
Figure (' '):	Interscalene approach to the plexus		
Figure (\ \ \):	Metacarpal (or transthecal) nervel, Head of the metacarpal bone by palpation	located	
Figure (۱۳):	Proximal and distal innervation lower extremity		

Figure (\ \ \ \ \ :	Femoral nerve block	٦٧
Figure (\ °):	Lateral femoral cutaneous nerve block	٦٨
Figure (١٦):	Inguinal perivascular "\"-in-\" block	. ٦٩
Figure (\ \ \ \):	Fascia iliaca	٧.
Figure (\\\):	Sciatic nerve block: anterior approach	. ٧٢
Figure (\ \ \ \):	Proximal sciatic nerve block: posterior and Subgluteal approaches	٧٣
Figure (' ·):	Sciatic nerve block: lateral approach	٧٤
Figure (۲۱):	Supraorbital and supratrochlear nerve blocks	٧٨.
Figure (۲۲):	Infraorbital nerve: the upper lip is everted; a needle is inserted through the subsulcal groove toward the infraorbital foramen	٠, ٨٠
Figure (۲۳):	Great auricular nerve block	۸٤
Figure (' '):	Greater occipital nerve block	٨٥
Figure (۲°):	Intercostal nerve block	۸٧
Figure (۲٦):	Iliohypogastric and ilioinguinal nerve blocks	۸۹.
Figure (YY):	Peri-umbilical (rectus sheath) block procedure	۹۱.
Figure (۲۸):	Penile block via the subpubic space	٩٢
Figure (۲۹):	Penile block using two paramedian injections into the subpubic space	۹۳
Figure (**):	Paravertebral blockade procedure	.90

Abstract

The practice of pediatric regional anesthesia is several millenniums old. An Egyptian sculpture of Saqqarah, carved about Your BC, shows a scene of circumcision in which an object-"The Stone of Memphis" appears to be employed for inducing anesthesia of the penis before operation. The later civilizations turned away from these traditional analgesic practices until the end of the nineteenth and the beginning of the twentieth centuries. (Dalens Bernard; 1949)

Regional anesthesia has become an essential part of pediatric anesthesia and, in many instances, represents the best option to provide intraoperative and postoperative pain relief in children whatever their ages and associated medical conditions. The increasing sophistication of medical treatments, the growing number of pediatric patients in poor physical condition scheduled for emergency as well as elective surgeries, and the constant improvement of general anesthetic techniques occasionally raise some questions concerning the benefit/ risk ratio of regional anesthetic techniques compared with that of other techniques of analgesia. (Lippincott Williams and Wilkins; **.**)

Epidural analgesia has many beneficial effects in the pediatric patient population. In clinical practice, it is commonly used to augment general anesthesia and to manage postoperative pain. Effective postoperative pain relief from epidural analgesia has numerous benefits including earlier ambulation, rapid weaning from ventilators,

reduced time spent in a catabolic state and lowered circulating stress hormone levels (Henderson et al; ۲۰۰۸)

Spinal anesthesia in pediatrics is most commonly used in the preterm infant undergoing anesthesia for hernia repair. Spinal anesthesia can also be used effectively in children for postoperative pain relief especially if opioids are used (**Tobias**; **Y···**)

The use of peripheral nerve blocks has been regaining significant popularity in the daily practice of most anesthesiologists. Despite the trend towards increase in the use of regional anesthesia and nerve blocks in adults, peripheral nerve blocks in children remain underutilized. (Ivani and Tonetti; Y···).

Key word:

Regional anesthesia in children

Pediatrics

Introduction

Pain is a protective mechanism designed to alert the body to potentially injurious stimuli. The alleviation of pain has been the focus of continuing human effort. Clinicians have long been misguided by the premise that neonatal and pediatric patients do not experience pain as severely as adults and that the duration of its impact may be less than in adults. (Hatch DJ; 1944)

Although children have a remarkable capacity to recover from physically painful events, no data support the

belief that they neither feel nor remember pain. Indeed more and more evidence indicates the contrary. (Prithvi et al; *...)

The effects of pain are deleterious. Pain evokes negative physiologic, metabolic and behavioral responses in children, including increased heart rate, respiratory rate and blood pressure; increased secretion of catecholamines, glucagons and corticosteroids.(Anand and Car DB; 1944)

The practice of pediatric regional anesthesia is several millenniums old. An Egyptian sculpture of Saqqarah, carved about Your BC, shows a scene of circumcision in which an object-"The Stone of Memphis" appears to be employed for inducing anesthesia of the penis before operation. The later civilizations turned away from these traditional analgesic practices until the end of the nineteenth and the beginning of the twentieth centuries. (Dalens Bernard; 1944)

Regional anesthesia has become an essential part of pediatric anesthesia and, in many instances, represents the best option to provide intraoperative and postoperative pain relief in children whatever their ages and associated medical conditions. The increasing sophistication of medical treatments, the growing number of pediatric patients in poor physical condition scheduled for emergency as well as elective surgeries, and the constant improvement of general anesthetic techniques occasionally raise some questions concerning the benefit/ risk ratio of regional anesthetic techniques compared with that of other techniques of analgesia. (Lippincott Williams and Wilkins; **••**)

Epidural analgesia has many beneficial effects in the pediatric patient population. In clinical practice, it is

commonly used to augment general anesthesia and to manage postoperative pain. Effective postoperative pain relief from epidural analgesia has numerous benefits including earlier ambulation, rapid weaning from ventilators, reduced time spent in a catabolic state and lowered circulating stress hormone levels (Henderson et al; Y···A)

Spinal anesthesia in pediatrics is most commonly used in the preterm infant undergoing anesthesia for hernia repair. Spinal anesthesia can also be used effectively in children for postoperative pain relief especially if opioids are used (**Tobias**; **Y···**)

The use of peripheral nerve blocks has been regaining significant popularity in the daily practice of most anesthesiologists. Despite the trend towards increase in the use of regional anesthesia and nerve blocks in adults, peripheral nerve blocks in children remain underutilized. Common reasons include the concern of neurologic complications and the lack of technical skills required for successful use of peripheral nerve blocks. The goal of these techniques that specifically and peripherally target the location of the surgery is to minimize the undesirable side effects of central regional blocks such as urinary retention, hypotension, and muscle weakness in unaffected areas. This led many anesthesiologists to suggest that peripheral blocks be used more often in place of central blocks when appropriate (Ivani and Tonetti; Y··•).

Aim of the Work

Aim of the work is to understand physiological differences between pediatrics and adults as regard regional Anesthesia , pharmacology of local anesthetics, central neuraxial block in pediatrics and peripheral nerve block in pediatrics , to be able to perform safe and effective peripheral and central nerve blocks.