Biochemical studies on α -amylases from *Euphorbia tirucalli*.

A Thesis

Submitted to Faculty of Science Ain Shams University in Partial Fulfillment of Master Degree in Biochemistry

Presented By

Hamed Belal Hamed Soliman

B.Sc., Biochemistry, 2006

Under Supervision of

Prof. Dr. Ibraheem Hassan Borai

Professor of Biochemistry Faculty of Science Ain Shams University.

Prof. Dr. Afaf Saad El-Deen Fahmy

Professor of Biochemistry
Molecular Biology Department
Genetic Engineering and Biotechnology Division
National Research Centre.

Dr. Maha Mostafa Kamal

Lecturer of Biochemistry Faculty of Science Ain Shams University.

> Faculty of Science Ain Shams University 2016

Biography

Name : Hamed Belal Hamed Soliman

Date of Graduation: May 2006, Faculty of Science,

Biochemistry Department,

Ain Shams University.

Degree awarded : B.Sc. in Biochemistry and Chemistry,

(Very good)

Occupation : Chemist, Cairo Water Company.

The aim of the work

The aim of this study is purification and characterization of the α -amylases from *Euphorbia tirucalli* with respect to the pH, optimum temperature, thermal stability, the effect of the metals, inhibitors and chelating agents, the ability to degradate different substrates and their kinetics toward these substrates for industrial purposes .

<u>Acknowledgement</u>

The author would like to express his deepest thanks and gratitude to **Prof. Dr. Ibraheem Hassan Borai,** Prof. of Biochemistry, Faculty of Science, AinShamsUniversity for valuable support, sponsoring the thesis and careful guidance.

My deep thanks and acknowledgment to **Prof. Dr. Afaf**Saad El-Deen Fahmy, Prof. of Biochemistry, Molecular Biology
Department, Genetic Engineering and Biotechnology Division,
National Research Centre, for suggesting the problem, sponsoring and supervising the thesis and her keen discussion and kind cooperation.

Greatest thanks and appreciation to **Dr. Maha Mostafa**, Lecturer of Biochemistry, Faculty of Science, Ain Shams University, for here support, kind care, guidance and continuous encouragement.

Greatest thanks and appreciation to **Dr. Mohamed Osman El-Badry**, Asst. Prof. of Biochemistry, Molecular Biology
Department, Genetic Engineering and Biotechnology Division,
National Research Centre, for his support, kind care, guidance and continuous encouragement.

Also, my deep thanks go to **Prof. Dr. Saleh Ahmed**Mohamed, Prof. of Biochemistry, Molecular Biology Department,

Genetic Engineering and Biotechnology Division, National Research

Centre, and **Dr. Azza Mostafa Abdel-Aty**, Asst. Prof. of

Biochemistry, Molecular Biology Department, Genetic Engineering

and Biotechnology Division, for their support, provide crucial advices

that help me through obstacles.

Abstract

The quantitative determination of α - amylase activity in latex of $\it E.\ tirucalii$ was found to be 2144 units/ml with a specific activity of 131.7 units mg $^{-1}$ protein , which was a good starting material for preparation of α -amylase. Purification was carried out for the three separated α -amylases namely α -Amylase AI , AII and AIII using columns of DEAE-Sepharose and Sephacryl S-200. Biochemical characterization for α -Amylase AI which has the highest specific activity with respect of molecular weight (40 kDa) , pH optimum (6.0) , temperature optimum (50°C) , substrate specificity , Michaelis constant , heat stability , effect of different metal cations and different compounds was carried out.

AI is a metaloenzyme; it was activated by Ca²⁺ (2mM) as the most of plant amylases and therefore it is strongly inhibited by the metal chelator EDTA, sodium citrate and sodium oxalate.

Key Words: *E. tirucalii* , α- Amylase , Purification , Characterization , AI , Metaloenzyme.

List of Abbreviations

AI	Euphorbia tirucalli amylase 1
AII	Euphorbia tirucalli amylase 2
AIII	Euphorbia tirucalli amylase 3
Asp	Aspargen
ATP	Adenosine Tri-Phosphate
BSA	bovine serum albumin
cm	Centimeter
CBB	Coomassie Brilliant Blue
$^{\circ}$ C	Celsius
DNS	dinitrosalicylic acid
D	Dalton
DEAE	Diethylaminoethyl
DNA	DeoxyriboNucleic Acid
DP	The degree of polymerization term
DTNB	Dithiobis 2-nitrobenzoic acid
EC	Enzyme Commission
EDTA	Ethylenediaminetetraacetic acid
EGTA	ethylene glycol tetraacetic acid
Fig	Figure.
g	Gram
Glu	glutamic acid
H- bond	Hydrogen bond
h	Hour
i.d.	Internal Diameter
Km	Mickaelis constant
KD	Kilodalton
LOX	Lipoxygenase
M	Morality
μg	Microgram.
μl	Microliter.
μm	Micromolar
Mg	Miligram
Ml	Milliliter
mM	Millimolar
Min	Minute
nm	Nanometer
<u> </u>	

M. wt	molecular weight
mmol	Millimole
m	Meter
p-CMB	p-Chloromercuribenzoate
PAGE	Polyacrylamide gel electrophoresis
р-НМВ	p-hydroxy mercuric benzoate
pН	Potential of Hydrogen
PMSF	Phenylmethanesulfonyl fluoride
Rf	Relative electrophoretic mobility
rpm	Revolutions Per Minute
Ser	Serine
SDS	Sodium dodecyl sulphate
Spp.	Species(plural)
Sp.	Species(single)
SEM	scanning electron microscopy
S	Substrate
TEMED	Tetramethylethylenediamine
TRI	triose phosphate isomerase
v/v	volume/volume
V0	Void volume
Vmaxs	Maximum volume
Ve	elution volume
w/v	weight/volume
%	Percentage
β-МЕ	β –mercaptoethanol

List of Figures

Figure		Page
1	Euphorbia tirucalli	7
2	A diagram shows the medical properties of <i>E. triucalli</i>	8
3	An α-amylase enzyme and four highly conserved regions.	19
	tinted are the conserved catalytic residues and the related	
	β-sheets	
4	A catalytic mechanism of Taka-amylase A based on the	23
	predicted three-dimensional structure of the substrate-	
	enzyme complex	
5	Structure of amylose	29
6	Amylopectin structure	31
7	Zoom the structure of potato starch. (A) tuber; (B) starch	32
	granules image via electron microscope; (C) a starch	
	particle slice shows the growth rings and its compositin of	
	semi-crystalline and amorphous regions; (D) detail of the	
	semi-crystalline area; (E) arrangement of the amylopectin	
	in the tree-like shape; (F) 2 glucose residues with an α -1-4	
	glycosidic linkage	
8	α-Amylase action pattern on (a) amylose; (b) amylopectin	34
9	A standard curve of bovine serum albumin	42
10	A Standard curve of maltose.	44
11	Calibration curve for estimation of the molecular weight	50
	by gel filtration on Sephacryl S-200 column (90 x 1.6 cm	
	i.d.) previously equilibrated with 20 mM Tris-HCl buffer,	
	pH 7.2, 1) Cytochrome C (12.4 kDa); 2) Carbonic	
	anhydrase (29 kDa); 3) Bovine albumin (66 kDa); 4)	
	Alcohol dehydrogenase (150 kDa); 5) β-Amylase (200	
	kDa) were eluted with the same buffer at a flow rate of 20	
	ml/h. Void volume was determined with Dextran blue	
	(2,000 kDa).	
12	Calibration curve for molecular weight determination by	55
	SDS polyacrylamide gel electrophoresis. 1)α-	
	Lactalbumin (14,400); 2) Soybean trypsin inhibitor	
	(20,000); 3) Carbonic anhydrase (30,000); 4) Ovalbumin	
	(45,000) and 5) Bovine serum albumin (66,000); 6)	
	Phosphorylase b (94,000 Da)	

13	A typical elution profile for the chromatography of <i>Euphorbia tirucalii</i> on a DEAE-Sepharose column (10×1.6 cm i.d.) equilibrated with 20 mM Tris-HCl buffer, pH 7.2 and eluted with gradients of NaCl (0.0 M to 0.4 M). Fractions of 3 ml were collected at 4°C and a flow rate of 60 ml/h.	62
14	A typical elution profile for the chromatography of 0.1M NaCl DEAE-sepharose fraction of <i>E. tirucalii</i> α -amylase (AI) on a Sephacryl S-200 column (90×1.6 cm i.d.) previously equilibrated with 20 mM Tris-HCl buffer, pH 7.2. Fractions of 2.5 ml were collected at 4°C and a flow rate of 20 ml/h.	63
15	A typical elution profile for the chromatography of 0.2 M NaCl DEAE-Sepharose fraction of <i>E. tirucalii</i> α-amylase (AII) on a Sephacryl S-200 column (90×1.6 cm i.d.) previously equilibrated with 20 mM Tris-HCl buffer, pH 7.2. Fractions of 2.5 ml were collected at 4°C and a flow rate of 20 ml/h.	64
16	A typical elution profile for the chromatography of 0.3 M NaCl DEAE-Sepharose fraction of <i>E. tirucalii</i> α-amylase (AIII) on a Sephacryl S-200 column (90×1.6 cm i.d.) previously equilibrated with 20 mM Tris-HCl buffer, pH 7.2. Fractions of 2.5 ml were collected at 4°C and a flow rate of 20 ml/h.	65
17	Native-polyacrylamide gel electrophoresis of <i>E. tirucalii</i> α-amylases crude extract and purified <i>E. tirucalii</i> α-amylases AI, AII and AIII (1) <i>E. tirucalii</i> crude extract, (2) AI, (3) AII and (4) AIII.	67
18	Native-polyacrylamide gel electrophoresis of <i>E. tirucalii</i> α -amylases crude extract (A) and purified <i>E. tirucalii</i> α -amylases AI activities (B).	68
19	The Molecular weight values for <i>E. tirucalii</i> α-amylases AI, AII and AIII as calculated from the calibration curve of a Sephacryl S-200 column. Standard proteins from 1-5 were previously mentioned in the Materials and Methods Section	69

20	SDS-PAGE for molecular weight determination of E. tirucalii α-amylase AI, AII and AIII (1) Molecular weight	71
	markers; (2) Crude extract; and (3) Purified <i>E. tirucalii</i> α-	
	amylase AI (4) Purified E. tirucalii α-amylase AII (5)	
	Purified E. tirucalii α-amylase AIII under reducing	
	conditions (M. wt of 40 ,27 and 23 KDa) respectively.	
21	Optimum pH of <i>E. tirucalii</i> α-amylase AI. The reaction	72
	mixture contained in 0.5 ml: 2 % starch, a suitable amount	
	of enzyme and 50 mM sodium acetate buffer (pH 3.5 -	
	6.0), 50 mM sodium phosphate buffer (pH 3.5 - 6.0) and	
	50 mM Tris-HCl buffer (7- 9). Each point represents the	
	average of two replicates.	
22	Optimum temperature of <i>E. tirucalii</i> α-amylase AI. The	74
	enzyme activity was measured at various temperatures	
	ranging from 20°C to 80°C. The reaction mixture	
	contained in 0.5 ml: 2 % starch, 50 mM sodium	
	phosphate buffer, pH 6 and suitable amount of enzyme.	
	Each point represents the average of two replicates.	
23	Effect of temperature on the thermal stability of <i>E</i> .	75
	tirucalii α-amylase AI. The reaction mixture contained in	-
	0.5 ml: 2 % starch, 50 mM sodium phosphate buffer, pH	
	6 and a suitable amount of enzyme. The reaction mixture	
	was preincubated at various temperatures ranging from	
	20°C to 80°C for 30 min prior to substrate addition,	
	followed by cooling in an ice bath. The enzyme activity	
	was measured using the standard assay method as	
	previously described. Activity at zero time was taken as	
	100% activity. Each point represents the average of two	
	replicates.	
24	Lineweaver-Burk plot relating <i>E. tirucalii</i> α -amylase AI	82
	reaction velocity to starch as substarte. The reaction	
	mixture contained in 0.5 ml: 50 mM sodium phosphate	
	buffer, pH 6, suitable amount of enzyme and different	
	concentrations of starch ranging from 0.2 to 1 mg. Each	
	point represents the average of two replicates.	
25	Lineweaver-Burk plot relating <i>E. tirucalii</i> α -amylase AI	83
23	reaction velocity to amylopectin as substarte. The	0.5
	reaction mixture contained in 0.5 ml: 50 mM sodium	
	phosphate buffer, pH 6, suitable amount of enzyme and	
	different concentrations of starch ranging from 0.4 to 1	
	mg. Each point represents the average of two replicates.	

List of Tables

Table		Page
1	Purification scheme for <i>E. tirucalii</i> latex α-amylases	60
2	Effect of selected metal cations on E. tirucalii α-	77
	amylase AI activity. The enzyme activity without added	
	metal cations was taken as 100 activity.	
3	Effect of metal chelating agents and different inhibitors	78
	on E. tirucalii α-amylase AI activity. The enzyme	
	activity without added inhibitors was taken as 100%	
	activity.	
4	Relative activities of <i>E. tirucalii</i> α-amylase AI toward	81
	different substrates. The activity of the enzyme with	
	potato soluble starch is regarded as 100%.	
5	The kinetic properties of <i>E. tirucalii</i> α-amylase AI	84

Contents

Contents	Page
Acknowledgment	i
Abstract	iii
List of Abbreviations	iv
List of Figures	vi
List of Tables	X
Introduction	1
Aim of the Work	5
Review of Literature	6
Particulate phases:	11
1- Oxidases	12
2- Lipoxygenase	13
3- Proteases:	13
4- Others enzymes	13
1- Amylases	14
1-1-Plant α- amylases: structure and function	16
1-2-Concept and definition of the α-amylase family	17
1-3-The common features of the α-amylase family	17
1-4-Organization of Domain in α -amylase family	18
1-4-1-Domain A	18
1-4-2-Domain B	20
1-4-3-Domain C	20
1-5-α-Amylase catalytic mechanism	21
1-6-Classification of α-amylase family	25
2- The α-amylases substrates	27
2-1-Starch	27
2-1-1: Amylose	28
2-1-2: Amylopectin	30
2-2-Degradation of starch in vitro	33
3-Application of α-amylases.	35
3-1-Application of enzyme based detergents	35
3-2-Textile processing	36
3-3-Liquefaction α-Amylases	36
The Materials and Methods	38
1-Chemicals	38
2-Buffers	38
3- Purification of latex α-amylase	38
3-1- Sample preparation:	38

3-2- Crude preparation:	39
3-3- DEAE- Sepharose column	39
3-4- Sephacryl S-200 column	40
4- Determination of protein by the method of Bradford	40
4-1- Principle	40
4-2- Reagents	41
4-3- Procedure	41
5- α-Amylase assay	41
6-Native polyacrylamide gel electrophoresis (PAGE)	43
6-1-Reagants	43
6-2-Procedure	45
6-3- Localization of the enzyme on the gel	46
6-3-1-Protien staining:	46
Procedure	47
6-3-2-Gel staining for activity	48
7- Molecular weight determination by gel filtration	48
8- Molecular weight determination by sodium dodecyl sulfate	49
polyacrylamide gel electrophoresis (SDS-PAGE)	
8-1- Principle	49
Principle	49
Reagents	51
Staining and destaining solutions	52
Staining solution	52
Destaining solutions	52
Procedure	53
9- Molecular weight determination by SDS-PAGE:	54
10- Characterization of E. tirucalli α-amylase	56
10-1- Optimum pH	56
10-3- Optimum Temperature	56
10-4- Thermal stability	56
10-5- Effect of different metal ions	56
10-6- Effect of metal chelators and inhibitors	57
10-2- Km	57
The results	59
The discussion	85
The summary	97
References	101
Arabic summary	١
Arabic abstract	۲