

ANAEROBIC SLUDGE DIGESTER PERFORMANCE IMPROVEMENT BY ADDING ORGANIC MUNICIPAL SOLID WASTES

A Thesis

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering

Prepared by

ENG. MOSTAFA AHMED ABD EL-SATTAR

B.Sc. in Civil Engineering, August 2010 Faculty of Engineering – Higher Technological Institute – Tenth or Ramadan city, EGYPT

Supervisors

Prof. Dr. MOHAMED EL HOSSEINY EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. FATEN ABDEL GHAFAR EL SERGANY,

Associate professor of Sanitary & Environmental Engineering Higher Technological Institute, Tenth of Ramadan city, EGYPT

Dr. AISHA ZAKI MAGED MOSTAFA.,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dedication

This thesis is lovingly dedicated to all the close, special and beautiful people in my life. A special dedication to my supportive parents and wonderful sisters for encouraging me to complete this work and for always being there for me.

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from November 2011 to August 3013.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2013

Signature: - -----

Name: - MOSTAFA AHMED ABD EL-SATTAR

ACKNOWLEDGMENTS

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of Professor Dr. Mohamed El Hossieny El Nadi, Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, this thesis wouldn't have been possible unless his great efforts, meticulous revision, scientific guidance and tremendous support.

I am profoundly grateful to Dr. Faten Abdel Ghafar El Sergany, Associate Professor of Sanitary Engineering, Faculty of Engineering, Higher Technological Institute, for her close and kind supervision, constructive criticism, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort she gave me.

I would like to thank Dr. Aisha Zaki Maged Mostafa, Assistant Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her sincere help and guidance.

Last but not least, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University, for facilities, encouragement and cooperation during the preparation of this study

ABSTRACT

Name: MOSTAFA AHMED ABD EL-SATTAR AHMED
Title: "ANAEROBIC SLUDGE DIGESTER
PERFORMANCE IMPROVEMENT BY ADDING
ORGANIC MUNICIPAL SOLID WASTES"

Faculty: Faculty of Engineering, Ain Shams University. Specialty: Civil Eng., Public Works, Environmental Eng. Abstract:-

The technical feasibility of the co-digestion of primary sewage sludge (PS) and food wastes as an organic fraction of municipal solid waste (OFMSW), in the context of typical Egyptian solid waste, was evaluated through this study. A pilot unit with 1.5 m3 net volume, simulates dynamically and geometrically full scale digester, was erected in El-Berka wastewater treatment plant, Cairo, Egypt. The digester worked under routine natural operating conditions and was daily fed through pulsing feeding. The study was operated in four stages each with different mixing ratio of PS to OFMSW 95:5, 90:10, 80:20, and 70:30 by volume, respectively. The unit was operated in mesophilic temperature, under minimal mixing conditions, and at retention time of 30 days, and the functioning of the digester was assessed by calculating the efficiencies of solids destruction and chemical oxygen demand (COD) removal. The digester was capable to work optimally under the mesophilic temperatures, without using any temperature adjustment devices. The results showed increase in solids destruction and COD removal efficiencies with increasing the portion of the food wastes in the influent mixtures. The TS, TSS and VSS destruction efficiencies reached 76.4 %, 82.1 %, 93.4 %, respectively, and the total and soluble COD removal efficiencies reached 70.1 % and 85.3 %, respectively. The optimum mixing ratio was of 80 % PS to 20 % OFMSW. It was also noticed that there was a need for pH adjustment through the process.

SUPERVISORS

Prof.Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Faten Abdel Ghafar El Sergany, Assistant Prof. Dr. Aisha Zaki Maged Mostafa.

TABLE OF CONTENTS

COVER	Page
APPROVAL COMMITTEE	ii
DEDICATION	
STATEMENT	
ACKNOWLEDGMENTS	V
ABSTRACT	
TABLE OF CONTENTS	vii
LIST OF ABBREVIATIONS	X
LIST OF FIGURES	xi
LIST OF TABLES	xiii
CHAPTER I: INTRODUCTION	
1.1. GENERAL	1
1.2. STUDY OBJECTIVES	2
1.3. SCOPE OF WORK	2
1.4. THESIS ORGANIZATION	2
CHAPTER II : LITERATURE REVIEW	
2.1 SLUDGE IN WASTE WATER TREATMENT PLANT	4
2.1.1. SLUDGE CHARACTERISTICS	4
2.1.2. ENVIRONMENTAL IMPACT	6
2.2 SLUDGE TREATMENT	7
2.2.1. THICKENING	7
2.2.2. CONDITIONING	8
2.2.2.1. Chemical Conditioning	8
2.2.2.2. Physical Conditioning	9
2.2.2.3. Other Conditioning	9
2.2.3. STABILIZATION	10
2.2.3.1. Anaerobic Digestion	10
2.2.3.2. Aerobic Digestion	11
2.2.3.3. Lime Stabilization	11
2.2.3.4. Chlorine Stabilization	12
2.2.3.5. Heat Treatment	12
2.3 SLUDGE ANAEROBIC DIGESTION	13
2.3.1. MICROBIOLOGY	13
2.3.2. PROCESS VARIATIONS	14
2.3.2.1. Low Rate Digestion	15
2.3.2.2. High Rate Digestion	15
2.3.2.3. Anaerobic Contact Process	16

2.3.2.4. Phase Separation	17
2.3.3. FACTORS AFFECTING ANAEROBIC DIGESTION	
PROCESS	18
2.3.3.1. Specific Characteristics of Sewage Sludge	18
2.3.3.2. Temperature	19
2.3.3.3. pH	20
2.3.3.4. C/N Ratio	21
2.3.3.5. Retention Time	22
2.3.3.6. Nutrients Effect	23
2.3.3.7. Organic Loading	23
2.3.3.8. Toxicity	23
2.3.3.9. Mixing Strategy	26
2.3.3.10. Feeding Strategy	27
2.3.4. ENERGETIC PERFORMANCE OF ANAEROBIC	
DIGESTION	27
2.4 ORGANIC MUNICIPAL SOLID WASTES	29
2.4.1. SOURCES AND AMOUNTS	29
2.4.2. MUNICIPAL SOLID WASTES CHARACTERISTICS	31
2.4.2.1. Moisture content	31
2.4.2.2. Particle Size	32
2.4.2.3. Chemical Characteristics	32
2.4.3. ANAEROBIC DIGESTION OF ORGANIC MUNICIPAL	
SOLID WASTE	33
2.5 MIXING BETWEEN SLUDGE AND ORGANIC SOLID	
WASTES IN DIGESTER	35
2.6 APPLICATIONS OF CO-DIGESTION	36
CHAPTER III: MATERIALS AND METHODS	
3.1. INTRODUCTION	42
3.2. STUDY LOCATION	42
3.3. PILOT UNIT	42
3.4. OPERATIONAL PROGRAM	46
3.5. SAMPLING	46
3.6. MEASUREMENTS	47
3.6.1. MEASURED PARAMETERS	47
3.6.2. ANALYTICAL MEASUREMENTS	47
3.6.2.1. Temperature	47
3.6.2.2. pH value	47
3.6.2.3. Total Solids, Total Suspended Solids, and Volatile	
Suspended Solids	49
3.6.2.4. Total and Soluble Chemical Oxygen Demand	51
3 6 3 SAMPLING PROCEDURE	52

3.6.4.	SAMPLING FREQUENCY	52
СНАІ	PTER IV: RESULTS	
4.1.	GENERAL	53
4.2.	RESULTS OF STAGE I	53
4.3.	RESULTS OF STAGE II	60
4.4.	RESULTS OF STAGE III	66
4.5.	RESULTS OF STAGE IV	73
CHAI	PTER V: DISCUSSION	
5.1.	INTRODUCTION	81
5.2.	RESULTS OF STAGE I	81
5.3.	RESULTS OF STAGE II	83
5.4.	RESULTS OF STAGE III	85
5.5.	RESULTS OF STAGE IV	88
5.6.	AFFECTING PARAMETERS DISCUSSION	91
5.6.1.	TEMPERATURE	91
5.6.2.	РН	93
5.6.3.	SOLIDS	95
5.6.4.	CHEMICAL OXYGEN DEMAND	98
CHAI	PTER VI: CONCLUSION	
6.1.	CONCLUSION	100
6.2.	RECOMMENDATIONS	101
6.3.	FURTHER WORK	101
REFE	RENCES	102

LIST OF ABBREVIATIONS

AD Anaerobic Digestion

ADS Anaerobically Digested Sludge
BOD Biochemical Oxygen Demand
C/N Carbon to Nitrogen Ratio
COD Chemical Oxygen Demand

DS Dry solids

FSS Fixed Suspended solids
HRT Hydraulic Retention Time
MSW Municipal Solid Wastes

OFMSW Organic Fraction of Municipal Solids waste
OFSUW Organic Fraction of Solid Urban Wastes
PCOD Particulate Chemical Oxygen Demand

PS Primary Sewage

RAW Raw Primary Sewage Sludge

SCOD Soluble Chemical Oxygen Demand

SGP Specific Gas Production SRT Solids Retention Time

SW Solid Waste

TCOD Total Chemical Oxygen Demand

TDS Total Dissolved Solids

TS Total Solids

TSS Total Suspended Solids

TWAS Thickened Waste Activated Sludge

VFA Volatile Fatty Acids VS Volatile Solids

VSS Volatile Suspended Solids
WAS Waste Activated Sewage
WWTP Waste water treatment plant

LIST OF FIGURES

Figure		Page
CHAPTER II:	LITERATURE REVIEW	
Figure (2/1):	Summary of the Anaerobic Digestion Process	13
Figure (2/2):	Low-Rate Anaerobic Digestion System	15
Figure (2/3):	Single-Stage, High-Rate Anaerobic Digestion System	16
Figure (2/4):	Anaerobic Contact Process	17
Figure (2/5):	Two-Phase Anaerobic Digestion Process	18
Figure (2/6):	Relationship between bacterial growth rate and temperature	20
Figure (2/7):	MSW Composition in Urban Areas in Egypt.	31
Figure (2/8):	Biogas Production Rate Verses Time.	40
CHAPTER III	: MATERIALS AND METHODS	
Figure (3/1):	Pilot Unit	43
Figure (3/2):	The pilot unit in El-Berkah Wastewater Treatment Plant	44
Figure (3/3):	Adding Primary Sludge to the pilot unit	44
Figure (3/4):	Adding OFMSW to the pilot unit	45
Figure (3/5):	Draining Supernatant effluents from the digester	45
Figure (3/6):	Measuring a sample's temperature using mercury filled	
	Celsius thermometer	48
Figure (3/7):	Jenway 3510 (UK), Bench pH Meter	48
Figure (3/8):	Drying oven, Memmet (Germany)	49
Figure (3/9):	Digital Accurate Balance Denver instrument model M 220	50
Figure (3/10):	Muffle Furnace, MEY	50
Figure (3/11):	COD Reactor, Hach - Model 16500 (USA)	51
CHAPTER VI	: RESULTS	
Figure (4/1):	TS values for influent and effluent sludge in stage I	54
Figure (4/2):	TSS values for influent and effluent sludge in stage I	55
Figure (4/3):	VSS values for influent and effluent sludge in stage I	55
Figure (4/4):	Total COD values for influent and effluents in stage I	56
Figure (4/5):	Solids Amounts in the influent sludge through stage I	57
Figure (4/6):	Solids Amounts in the effluent digested sludge in stage I	57
Figure (4/7):	Influent and Effluent Temperatures through stage I	59
Figure (4/8):	Influent and Effluent pH values through stage I	59
Figure (4/9):	TS values for influent and effluents in stage II	61
Figure $(4/10)$.	TSS values for influent and effluents in stage II	61

Figure (4/11):	VSS values for influent and effluent sludge in stage II	62
Figure (4/12):	Total COD values for influent and effluents in stage II	62
Figure (4/13):	Solids Amounts in the influent sludge through stage II	63
Figure (4/14):	Solids Amounts in the effluent digested sludge in stage	
	II	64
Figure (4/15):	Influent and Effluent Temperatures through stage II	65
Figure (4/16):	Influent and Effluent pH values through stage II	65
Figure (4/17):	TS values for influent and effluents in stage III	67
Figure (4/18):	TSS values for influent and effluents in stage III	67
Figure (4/19):	VSS values for influent and effluent sludge in stage III	68
Figure (4/20):	Total COD values for influent and effluents in stage III	68
Figure (4/21):	SCOD values for influent and effluents in stage III	69
Figure (4/22):	Solids Amounts in the influent sludge through stage III	70
Figure (4/23):	Solids Amounts in the effluent digested sludge in stage	
_	III	71
Figure (4/24):	Influent and Effluent Temperatures through stage III	72
Figure (4/25):	Influent and Effluent pH values through stage III	72
Figure (4/26):	TS values for influent and effluents in stage IV	74
Figure (4/27):	TSS values for influent and effluents in stage IV	74
Figure (4/28):	VSS values for influent and effluent sludge in stage IV	75
Figure (4/29):	Total COD values for influent and effluents in stage IV	75
Figure (4/30):	SCOD values for influent and effluents in stage IV	76
Figure (4/31):	Solids Amounts in the influent sludge through stage IV	77
Figure (4/32):	Solids Amounts in the effluent digested sludge in stage	
	IV	78
Figure (4/33):	Influent and Effluent Temperatures through stage IV	79
Figure (4/34):	Influent and Effluent pH values through stage IV	79
CHAPTER V:	DISCUSSION	
Figure (5/1):	Digester's Temperatures through the Experiment	92
Figure (5/2):	Digester's Temperature Relation with TS Destruction	-
8 (-, -)-	and COD Removal through the Experiment	92
Figure (5/3):	Digester's pH values through the Experiment	94
Figure (5/4):	Digester's pH Relation with TS Destruction and COD	
8 (- / - / -	Removal through the Experiment	94
Figure (5/5):	TS concentrations through the Experiment	95
Figure (5/6):	Digested Sludge's VSS/TS and FSS/TS	96
Figure (5/7):	Solids Destruction Efficiencies through the Experiment	97
Figure (5/8):	COD Removal Efficiencies through the Experiment	98

LIST OF TABLES

Table		Page
CHAPTER II	: LITERATURE REVIEW	
Table (2/1)	Sources and Types of Sludge	5
Table (2/2)	Thickening Methods in Sludge Processing	8
Table (2/3):	C/N ratios for different feedstocks	22
Table (2/4):	Effect of Soluble Sulphide on the Anaerobic Digestion	
	System	26
Table (2/5):	Performance Parameters of the Anaerobic Digestion of	
	Sewage Sludge	28
Table (2/6):	Sources Of MSW	29
Table (2/7):	Waste Composition in Different Countries.	30
Table (2/8):	Moisture Content of Uncompacted Refuse Components	32
Table (2/9):	Chemical Composition of the Different Components of	
	SW	33
CHAPTER IV	V: RESULTS	
Table (4/1):	Results of TS, TSS, VSS, and Total Chemical Oxygen	
` ,	Demand Measurements of Stage I	54
Table (4/2):	The amounts of TS, TSS, VSS, FSS, and TDS during	
	Stage I	56
Table (4/3):	Results of Temperature and pH measurements in stage I	58
Table (4/4):	Results of TS, TSS, VSS, and Total and Soluble Chemical	
	Oxygen Demand Measurements of Stage II	60
Table (4/5):	The amounts of TS, TSS, VSS, FSS and TDS during Stage	
	II	63
Table (4/6):	Results of Temperature and pH measurements in stage II	64
Table (4/7):	Results of TS, TSS, VSS, and Total and Soluble Chemical	
	Oxygen Demand Measurements of Stage III	66
Table (4/8):	The amounts of TS, TSS, VSS, FSS and TDS during Stage	
	III	70
Table (4/9):	Results of Temperature and pH measurements in stage III	71
Table (4/10):	Results of TS, TSS, VSS, and Total and Soluble Chemical	
	Oxygen Demand Measurements of Stage IV	73
Table (4/11):	The amounts of TS, TSS, VSS, FSS and TDS during Stage	77
T 11 (4/10)	IV	77
Table (4/12):	Results of pH and Temperature measurements in stage IV	78
CHAPTER V	: DISCUSSION	
Table (5/1):	Average values of TS, TSS and VSS through stage I	82

Table (5/2):	Ratio of 188, VSS and FSS to the total solids weight of	
	the influent and effluent sludge through stage I	82
Table (5/3):	TS, TSS and VSS destruction efficiencies through stage I	82
Table (5/4):	average values of TS, TSS and VSS through stage II	84
Table (5/5):	Ratio of TSS, VSS and FSS to the total solids weight of	
	the influent and effluent sludge through stage II	84
Table (5/6):	TS, TSS and VSS destruction efficiencies through stage II	84
Table (5/7):	Average values of TCOD, SCOD and PCOD through	
	stage II	85
Table (5/8):	COD Removal efficiencies through stage II	85
Table (5/9):	average values of TS, TSS and VSS through stage III	86
Table (5/10):	Ratio of TSS, VSS and FSS to the total solids weight of	
	the influent and effluent sludge through stage III	86
Table (5/11):	TS, TSS and VSS destruction efficiencies through stage III	87
Table (5/12):	Average values of TCOD, SCOD and PCOD in stage III	88
Table (5/13):	COD Removal efficiencies through stage III	88
Table (5/14):	average values of TS, TSS and VSS through stage IV	89
Table (5/15):	Ratio of TSS, VSS and FSS to the total solids weight of	
	the influent and effluent sludge through stage IV	89
Table (5/16):	TS, TSS and VSS destruction efficiencies through stage	
	IV	89
Table (5/17):	Average values of TCOD, SCOD and PCOD in stage IV	90
Table (5/18):	COD Removal efficiencies through stage IV	90

CHAPTER I INTRODUCTION

1.1. GENERAL

According to the Egyptian Environmental Affairs Agency (EEAA) studies, it was estimated that nearly 1.5 - 2 million tons of dry sludge and 15 - 16 million tons of municipal solid waste is generated annually in Egypt. Organic wastes constitutes about 50-60% of the generated municipal solid waste. Conventional municipal solid waste management has focused primarily on disposal, with little or no emphasis on preprocessing or resource recovery alternatives. While sewage sludge management, in contrast, has involved extensive sludge treatments and beneficial use practices.

The rapid urbanization in the major Egyptian cities directly contributes to waste generation, and improperly managed wastes pose a risk to human health and environment and also increase greenhouse gases' emissions, which contribute to climate change. Consequently, a severe need for finding out efficient and sustainable waste treatment methods and management techniques was created.

Several studies and research projects stated that the Anaerobic Digestion is considered to be one of the most reliable waste treatment techniques to mitigate for climate change. As the process occurs naturally, in the absence of oxygen, as bacteria break down organic materials and produce biogas. The process reduces the amount of material and produces biogas, which can be used as an energy source.

Moreover, co-digestion is of considerable technical interest, since it allows the use of existing installations in wastewater treatment plants that could potentially reduce capital and operating costs. Other benefits of co-digestion include: dilution of potential toxic compounds, improved balance of nutrients, synergistic effects of microorganisms, increased load of biodegradable organic matter and better biogas yield. An additional advantage of the process is the obtaining of a valuable sludge which can eventually be used as a soil amendant after minor treatments.

1.2. STUDY OBJECTIVES

The present study has been designed with the following objectives:

- To investigate the effect of the anaerobic co-digestion of the sewage sludge and the organic municipal solid wastes, as well as the factors that affect the performance of the co-digestion process.
- To find out the optimum mixing ratio of primary sewage sludge and food waste as an organic fraction of municipal solid waste
- To evaluate the technical feasibility of the process in the context of typical Egyptian solid waste.

1.3. SCOPE OF WORK

The study program was prepared to achieve the study objectives and was divided to two main parts, theoretical and practical. The first step of the theoretical part included collection of data for the literature review for the digester including all parameters affecting its efficiency.

This was followed by the practical part, for which a continuous feeding pilot unit, chosen to be dynamically and geometrically similar to a full scale digester, was erected in El-Berka wastewater Treatment plant, Cairo, Egypt, to investigate the effect of the anaerobic co-digestion of sewage sludge and organic municipal solid wastes. Different mixing ratios of primary sewage sludge and organic municipal solid waste were tested to find out the optimum mixing ratio.

While the second step of the theoretical part included analyzing and discussing the results and findings obtained from the practical work in order to identify conclusions and recommendations.

1.4. THESIS ORGANIZATION

The thesis consists of six chapters in addition to abstract, Arabic summery and references.