Management of Infected Proximal Femur after Fracture Fixation

Essay

Submitted for partial fulfillment of master degree in Orthopedic surgery

By

Ahmed Sayed Bakhiet Mohammed

M.B.B.Ch "Ain Shams University"

Under Supervision Of

Prof. Dr. Atef Mohammed El Beltagy

Professor of orthopedic surgery Faculty of medicine Ain Shams University

Dr. Shady Samir

Lecture of orthopedic surgery Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgment

First and foremost, praise and thanks be to the Almighty (ALLAH) for his limitless help and guidance and peace be upon his prophet.

I would like to express my deepest thanks, gratitude and profound respect to my professor,

Dr. Mohammed Atef El Beltagy, Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision.

I consider myself fortunate to work under his supervision. His constant encouragement and constructive guidance were of paramount importance for the initiation, progress and completion of this work.

No words can describe the effort and help of

Dr. Shady Samier, lecturer of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his great support, facilities, careful supervision and continuous advice and guidance which were cornerstone for this work and helped me to overcome many difficulties.

Last but not least, I would like to express my endless gratitude to my family, especially my father, my mother, my wife and also my friends for their everlasting love, care and support.

Ahmed Sayed Bakhiet

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction and Aim of the Work	1
Fixation modalities of proximal femoral fracture	5
Pathogenesis	21
Prevention	26
Clinical picture	32
Investigation	40
Treatment	57
Summary and conclusions	119
References	121
Arabic summary	

List of Abbreviations

ALAC : Antibiotic loaded acrylic cements

AP : Anteroposterior

BMD : Bone mineral density

CRP : C-Reactive Protein

CT : Computed tomography

DHS : Dynamic hip screw

DIAR : Debridement, antibiotic and retention

DVT : Deep venous thrombosis

ESR : Erythrocyte sedimentation Rate

FDG : Fluoro – 2deoxy –2– D glucose

FISH : Fluorescence in situ hybridization

HA : Hip arthroplasty

111In : Indium-111

IFM : Immunofluorescence microscopy

IL-6 : Interleukin-6

IMRALC: Intramedullary rod with antibiotic loaded

cement

MRI : Magnetic resonance imaging

MRSA : Methicillin Resistance Staph Aureus

NSIPP : The National Surgical Infection Prevention

Project

List of Abbreviations (Cont.)

PCR : Polymerase chain reaction

PET : Positron Emission Tomography

PFN : Proximal femoral nailing

PMMA : Polymethylmethacrylate

PROSTALAC: The prosthesis of antibiotic loaded acrylic

cement

SMX : Sulfamethoxazole

TAD : The tip –apex distance

Tc 99m : Techentium bone scan

Tc-HIG : Human Immunoglobulin G

THA : Total hip arthroplasty

TMP : Trimethoprim

WBC : White blood cells

List of tables

Table	Title	Page
1	Commonly identified microorganisms	22
	causing infections associated with	
	fracture fixation devices	
2	Characteristics of synovial fluid in	48
	patients with native and prosthetic joints	
	infection	
3	Classification and treatment of infection	58
	at site of a hip arthroplasty	
4	Antibiotics used in oral treatment	91

List of Fig.s

Fig.	Title	Page
1	Anatomic regions to area of proximal	5
	femoral fractures	
2	Stinchfield test	6
3	Anatomical classification of fracture hip	8
4	Clinical examples of proximal femur	8
	fractures	
5	Intracapsular fracture neck femur	9
6	Garden's Classifications	10
7	Pauwel's classification	11
8	Fixation of undisplaced fracture neck	12
	femur	
9	Method of insertion of cannulated	13
	screws in Fracture neck femur fixation	
10	Austin-Moore prosthesis Vs Thompson	15
	prosthesis	
11	Total hip arthroplasty	15
12	A. Evan's classification	16
	B. AO Classification	
	C. Jensen's Classification	
13	Intertrochanteric fracture fixed by:	17
	A. Dynamic Hip Screw	
	B. Gamma nail	
14	Tip Apex Index in DHS	18
15	Subtrochsnteric fracture fixation by:	20
	A. Condylar palate plade	
	B. Locked plate	
	C. Dynamic Condylar Screw	
16	Microorganisms biofilm	23
17	Staphylococcus aureus biofilm causing	25
	prosthetic joint infection	
18	Scanning Electron Micrograph of a	25
	Staphylococcus epidermidis Biofilm	

List of Fig.s (Cont.)

Fig.	Title	Page
19	A.Normal spine	36
	B.Hyperlordotic spine	
20	Trendelenburg gait	37
21	Thomas test	38
22	Apparent leg length and true leg length	38
23	Galleazzie's sign	39
24	X-ray shows focal osteolysis at tip of	43
2.5	stem	40
25	Failure of cemented Bipolar	43
2.5	Arthroplasty with Infection	4.4
26	AP Radiograph of failed infected THA	44
27	CT of infected THA	45
28	Magnetic resonance imaging (MRI) of	46
	the infected total hip	
29 A	High concentration of neutrophils	50
29B	Photomicrograph shows neutrophils and	50
	in the absence of an underlying	
	inflammatory arthropathy	
29C	Photomicrograph shows approximately	51
	six neutrophils, and at our laboratory, in	
	the appropriate clinical setting, would be	
	interpreted as being suggestive of	
	ongoing infection	
30	Tc ^{99m} bone scan	53
31	Arthrography of infected THA	56
32	Radiograph of a 38-year-old man who	65
	had infection of a right total hip	
	arthroplasty	
33	Extended Trochanteric Osteotomy	69
	Technique	
34	Extended trochanteric osteotomy	70
35	The Extended trochanteric osteotomy	71
	intraoperative	

List of Fig.s (Cont.)

Fig.	Title	Page
36	The EXPLANT system	74
37	Articulated hip spacer	76
38	A bulb from an irrigation syringe can be	76
	used to fashion articulated femoral head	
	cement spacer	
39	Short and long PROSTALAC stem mold	78
40	Antibiotic loaded cement is packed into	78
	the mold	
41	Radiograph show PROSTALAC implant	79
42	Postoperative radiograph show the	80
	handmade articulating hip spacer	
43	Handmade articulating antibiotic-	80
	cements spacer	
44	The ANTILOCH mold device	81
45	ALAC are used to fill the dead space	82
	after removal of the prosthesis	
46	Bilateral Girdlestone operation	86
47	Technique of Girdlestone operation	88
48	Schematic diagram of the modified	96
	Ilizarov technique for infected nonunion	
	of the femur.	
49	Preparation of the calcium sulfate	100
	antibiotic-impregnated cement beads	
50	Radiographs of the femur in a 38-year-	102
	old man showing	
	Interlocking nailing and local antibiotic	
	beads for nonunion of femoral shaft	
	fracture	
51	The mold technique (Method 1).	106
52	The silicone tubing technique (Method	109
	2).	
53	Infection after reduction with	113,
	intramedullary nail	114

List of Fig.s (Cont.)

Fig.	Title	Page
54	Treatment algorithm of chronic infection	115
55	Deep infection after DHS in 72 years old	117
	man	
56	Deep infection after DHS in 18 years old	118
	man	

Introduction

Proximal femoral fractures are the second most common fractures in patients older than 65 years. Deep infection after osteosynthetic treatment is considered to be one of the major complications with a high rate of mortality. Despite large improvements in implant design and surgical technique, complications in fracture healing are very common. (1)

1.05% Of proximal femoral fractures developed surgical site infection. 72% of infections occurred in a patient who has sustained intracapsular fractures with the remaining 28% of infections occurring in patients with extacapsular fractures. MRSA was isolated in 47% of the cases. (2)

The pathogenesis of infections associated with fracture fixation devices is related to microorganisms growing in biofilms, which render these infections difficult to treat. These infections are classified according to the implant surgery to: (2)

- 1- Early (less than 2 weeks)
- 2- Delayed (from 2 10 weeks)
- 3- Late infections (more than 10 weeks)

Most infections are caused by staphylococci and are acquired during trauma (in penetrating injuries) or subsequent fracture fixation procedure.

There is no routinely used test significant to diagnose infection, so combined investigations are usually needed to accurately diagnose infection. Magnetic resonance imaging (MRI) and computed tomography (CT) scans are used to diagnose infection and plan for surgical treatment. (3)

Aspiration of fluid accumulation provides most accurate specimens for detecting the infecting microorganism and specific antibiotic. (3)

Introduction and Aim of The Work

The basic principle of treatment is to do radical debridement until the site is considered aseptic and removal of the implant with use of systemic and local antibiotic appropriate for the microorganisms. Stabilization of the fracture is essential for bone union. (1), (3), (4), (5)

Management of intracapsular infection (infected hip arthroplasty) is very difficult, because bacteria form biofilms on the implants which protect the organisms from host immune system and also prevent penetration of the antimicrobial agents. (6)

The management based on the stages of infection:

- Treatment of stage I infection (superficial infection) depends on immediate debridement and antibiotics.
- Treatment of stage II and III infection by one stage exchange arthoplasty if no bone loss or two stage exchange arthroplasty. (7), (8), (9)

Extracapsular hip infected non union after stabilization with dynamic hip screw is uncommon. Although extracapsular hip fractures occur more often in elderly patients, due to low energy injury such as falling down, and are often associated with medical diseases or compromised immunity, the wound healing process is usually not disturbed. The reported wound infection rate is 0-2.2% .the most common microorganism lead to infection is Oxacillin Resistant Staphylococcus Aureus (ORSA). When deep infection cannot be controlled, internal fixation must be removed with good radically debridement and irrigated with massive normal saline solution. All grossly unhealthy soft tissues and sequestrum were removed. Reinsertion of internal fixation is the best choice. Mixed antibiotic powder and solution should be placed in the tunnel of new lag screw. (10)

In treatment of infected intramedullary nail, there are two basic strategies of treatment: the "union first strategy" or "the infection elimination first strategy". If fracture stability

Introduction and Aim of The Work

was dependant on the nail, the nail should not be removed prematurely. Some authors prefer reaming to debride the medullary canal and then external fixation and bone grafting when nonunion is present. (11)

The endpoint of the treatment of infected proximal femur after fracture fixation may be either Girdelstone procedure or a second stage arthroplasty. The decision is depend on the response to the treatment, the health status and the functional needs of each individual. (2)

Aim of this study

Discuss different treatment options for infected proximal femoral fracture after fixation as well as to analyze the clinical outcome and quality of life and achieve bone consolidation and avoiding development of chronic osteomyelitis.