Comparison between the Effect of Intracoronary Sodium Nitroprusside versus Verapamil on the Prevention of the No/Slow Reflow Phenomenon in patients with acute ST Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Intervention

Chesis

Submitted for partial fulfillment of M.D. degree in Cardiology

By

Hesham Mohamed Kamal Abd-elAziz

M.Sc. Cardiology, Ain Shams University

Under Supervision of

Dr. Said Abd-Elhafiz Khaled

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Tarek Khairy Abd-Eldayem

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Sameh Saleh Thabet

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Wael Mahmoud Elkelany

Assistant Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Tarek Rashid Mohamed

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

سِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

نَّمَا كُنِتُمْ نَمْمَلُونَ" عَالِمُ الْمَيْنِ وَالشَّهَادَةِ فَيَنَبِّنُكُم كَالِمُ الْمَيْنِ وَالشَّهَادَةِ فَينَبِّنُكُم كَالِمُ الْمَيْنِ وَالشَّهَادَةِ فَينَبِّنُكُم كَالِمُ الْمُيْنِ وَالشَّهَا وَسَنَرَ فَينَبِّنُكُم كَالُمُ عَلَامُ الْمُؤَنِّمُ السَّرَاكِ اللَّهُ عَلَامُكُمْ

صدق الله العظيم

التوبة – آية ١٠٥

Acknowledgment

It is a great thing to feel success and have the pride of achieving all what is always aspired. Nevertheless, one must not forget all those who usually help and push him onto the most righteous way that inevitably ends with fulfillment and perfection.

When the instant comes to appreciate all those kind-hearted people, I soon mention **Prof. Saed Abd-Elhafiz Khaled,** Professor of Cardiology, Ain Shams University, the person who gave me the honor to be his student. He really helped me by his precious opinions and contributive comments that served much in the construction of this work.

Great thanks are also due to Prof. Tarek Khairy Abd-Eldayem, Professor of Cardiology, Ain Shams University. He was always there to care, support, encourage and provide constructive pieces of advice in every possible way.

I would like to express my deepest thanks to **Prof. Sameh Saleh Thabet,** Assistant Professor of Cardiology, Ain Shams University, for his uninterrupted care and advice, his meticulous supervision precious remarks and continuous encouragement.

Thanks also to **Prof. Wael Mahmoud Elkelany**, Assistant professor of cardiology, Ain Shams University, who was been the real brother, whom fruitful thinking and continuous advise was behind the progress of this work.

I cannot forget the help of Dr. Tarek Rashid Mohamed, Lecturer of Cardiology department for his cooperation in the practical part of this work.

I would also like to record my thanks and sincere gratitude to my family for their great help and support throughout the work.

List of Contents

Subject	Pa	ıge No.
List of Abbro	eviations	i
List of Table	S	iii
List of Figure	es	vi
Introduction		1
Aim of the W	/ork	4
Chapter (1):	Acute ST-segment Elevation Myocardial Infarction – Definition and Pathogenesis	5
Chapter (2):	Primary Percutaneous Coronary Intervens	ion16
Chapter (3):	Microvascular Obstruction and the No-Reflow Phenomenon after PCI	29
Patients and	Methods	64
Results		80
Discussion		107
Conclusions		118
Recommenda	ations	119
Summary		120
References		122
Arabic Sumr	narv	

List of Abbreviations

ACC : American College of Cardiology

ADP : Adenosine diphosphate

AHA : American Heart Association
AMI : Acute myocardial infarction

BMS : Bare-metal stents

BNP : Brain natriuretic peptide

CABG: Coronary artery bypass grafting

CBC : Complete blood picture

CTFC : Corrected TIMI frame count

DAPT : Dual antiplatelet therapy

DES : Drug eluting stent

EMS : Emergency Medical System

EPO : Erythropoietin

ER : Emergency room

ESC: European Society of Cardiology

FBS : Fasting blood sugarFMC : First medical contactFPP : First-pass perfusion

GP : Glycoprotein

HR : Heart rate

hs-CRP: High sensitivity C-reactive protein

IABP : Intra-aortic balloon pumping

IC : Intracoronary

INR : International normalization ratio

IRA : Infarct related artery

LBBB : Left bundle branch blockLDL : Low-density lipoprotein

List of Abbreviations (Cont...)

MACE : Major adverse cardiac events

MBG : Myocardial blush grade

MCE : Myocardial contrast echocardiography

MI : Myocardial infarctionMR : Mitral regurgitation

MVO : Microvascular obstruction

NCEP-ATP III : National cholesterol education program-adult treatment panel III

NRMI : National Registry of Myocardial Infarction

NT-pro BNP : N-terminal fragment of pro-brain natriuretic peptide

PCI: Percutaneous coronary intervention

PT : Prothrombin time

PTCA: Percutaneous transluminal coronary angioplasty

PTT : Partial thromboplastin time

RT-MCE: The real-time myocardial contrast echocardiography

SD : Standard deviation

SWMSI : Segmental wall motion score index

TC : Total cholesterol
TG : Triglycerides

TNF : Tumor necrosis factor

TVR : Target Vessel Revascularization

URL : Upper reference limit

VAPOR : Vasodilator Prevention of No-Reflow

VSR : Ventricular septal rupture

List of Tables

Cable No.	Citle	Page No.
Table (3):	Randomization table	65
Table (4):	Gender distribution among the study	groups80
Table (5):	Age distribution among the study gro	oups81
Table (6):	Distribution of risk factors among the groups	· ·
Table (7):	Comparison between the three greated Killip Classification:	
Table (8):	The mean and standard deviation of pain duration and time to treatment groups	among
Table (9):	Comparison between the study regarding the number of leads show segment elevation	ving ST
Table (10):	Comparison between the study regarding the preprocedural ST elevation	segment
Table (11):	Comparison between Pre- and maximum ST segment value wit same group	hin the
Table (12):	Comparison between Pre- and Post- segment value within the same group	
Table (13):	Comparison between the study regarding the ECG signs of reperfusi	•
Table (14):	Comparison between the study regarding the Resolution of ST ≥70%	segment

List of Tables (Cont...)

Eable No.	Eitle Page No.
Table (15):	Comparison between the study groups regarding the reperfusion arrhythmias:90
Table (16):	Comparison between the study groups regarding the number of leads showing Q wave:
Table (17):	Comparison between the study groups regarding the culprit vessel:91
Table (18):	Comparison between the study groups regarding lesion type and thrombus burden:92
Table (19):	Comparison between the study groups regarding TIMI flow grading prior to PCI93
Table (20):	Percentage of patients who underwent PTCA before stenting in the study groups:94
Table (21):	Mean and standard deviation of stent diameter and stent length among the study groups:
Table (22):	Comparison between the study groups regarding TIMI flow grading post PCI:95
Table (23):	Comparison between the study groups regarding TIMI frame count in each vessel:96
Table (24):	Comparison between the study groups regarding the mean TIMI frame count in all vessels:
Table (25):	Comparison between the study groups regarding the myocardial blush grade99
Table (26):	Distribution of no reflow phenomenon among the study groups:

List of Tables (cont...)

Cable No.	Citle	Page No.
Table (27):	Comparison between the study regarding the complication:	•
Table (28):	Comparison between the study regarding the peak total CK and to CK-MB:	he peak
Table (29):	Comparison between the study grregards LV ejection fraction:	_
Table (30):	Comparison between the study regarding the LV internal dimensistem SWMAI:	ion and
Table (31):	Comparison between the study regarding the presence of ischemic M	•
Table (32):	Comparison between the study regarding the presence of LV thromb	•
Table (33):	Comparison between the study regarding the Duration of hospitaliza	•
Table (34):	Comparison between the study regarding total MACE:	

List of Figures

Figure No	v. Eitle	Page No.
Figure (1):	Pathophysiologic events culminating acute coronary syndrome	
Figure (2):	Coagulation cascade	14
Figure (3):	Delay times in relation to first me contact	
Figure (4):	Prehospital and in-hospital manage and reperfusion strategies within 24 FMC.	h of
Figure (5):	Schematic representation of pathophys mechanisms of No- reflow	_
Figure (6):	Prevention algorithm for No-reflow	61
Figure (7):	Treatment algorithm for No-reflow	62
Figure (8):	Distribution of gender among the groups	-
Figure (9):	Distribution of risk factors among study groups	
Figure (10)	Classification of the study g according to Killip class	
Figure (11)	Comparison between the study g regarding the Resolution of ST seg ≥70%:	gment
Figure (12)	Distribution of culprit vessel disease study groups	
Figure (13)	Post PCI TIMI flow grading amon study groups	_
Figure (14)	Comparison between the study g regarding TIMI frame count in each ve	-

List of Figures (Cont...)

Figure No.	Eitle	Page No.
reg	mparison between the starding overall TIMI frame	count in all
Figure (16): Pos	st PCI MBG among the stud	ly groups99
_	currence of no reflow ong the study groups	•
	currence of complications dy group	•
	ak enzymatic elevation (mboth groups	•

Introduction

cute myocardial infarction (AMI) remains a public health problem of epidemic proportions. Recent data from the American Heart Association (AHA) reveal a prevalence of myocardial infarction (MI) of 1.9-5.2%, which varies by age, sex, and ethnicity (*American Heart Association*, 2003).

Interestingly, in the last decade the National Registry of Myocardial Infarction (NRMI) have recorded a decrease in the percentage of patients with myocardial infarction who present with ST segment elevation (from 36% to 27%, p \leq 0.001), while the percentage presenting without ST segment elevation has increased (from 45% to 63%, p \leq 0.001).

Coronary atherosclerotic disease is the underlying substrate in nearly all patients with acute MI. The initiating event is a crack or fissure in the diseased arterial wall, which occurs as a result of loss of integrity of the plaque cap (Plaque disruption). The fissure or even frank plaque rupture leads to exposure of subendothelial matrix elements such as collagen, stimulating platelet activation and thrombus formation. Furthermore, tissue factor is released with the arterial injury, which directly activates the extrinsic coagulation cascade and promotes the formation of fibrin. If an occlusive thrombus forms, patients may develop an acute ST-segment elevation MI unless the subtended myocardium is richly collateralized.

Primary percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has been shown to be preferable to thrombolytic therapy in terms of patient survival, higher rates of patency in the infarcted arteries, and lower rates of reinfarction and stroke (*Weaver et al.*, 1998). Thus, PCI has become the standard therapy for AMI. However, in some patients, after the epicardial coronary occlusion has been resolved, the blood flow may cease or slow down dramatically. This phenomenon is called no reflow or slow reflows.

The no-reflow phenomenon was originally observed in experimental models of acute myocardial infarction (MI) and was described as a failure to restore normal myocardial blood flow despite removal of the coronary obstruction (*Kloner et al., 1975*) Since that time, no-reflow has been shown to complicate thrombolytic therapy and percutaneous revascularization with PTCA and other devices (*Kitazume et al., 1988*). The occurrence of no-reflow phenomenon after recanalization of the infarct related artery in acute myocardial infarction is described in up to 40% of cases (*Amit et al., 2006*).

Defined angiographically, no-reflow manifests as an acute reduction in coronary flow (TIMI grade 0-1) in the absence of dissection, thrombus, spasm, or high-grade residual stenosis at the original target lesion. Lesser degrees of flow impairment (TIMI grade 2) are generally referred to as "slow-flow." However, studies of acute MI patients have reported that scintigraphic evidence for no-reflow may occur in the absence of angiographic slow-flow, suggesting that microvascular injury may be angiographically inapparent in some patients (*Kondo et al.*, 1998).

No/slow reflow is a serious complication of PCI performed for AMI that increases mortality and decreases left ventricular functional recovery. Furthermore, this phenomenon is also linked to ventricular arrhythmias, early congestive heart failure, ventricular remodeling and even cardiac rupture (*Morishima et al.*, 2000). For these reasons, it is very important to prevent no reflow or slow reflow during PCI for AMI.

The exact mechanisms that underlie the no reflow or slow reflow phenomena are not known. The main pathogenetic mechanisms causing these phenomena were thought to be distal embolization and ischemia-reperfusion injury. However, there is considerable evidence suggesting that these phenomena are mainly due to dysfunction of the microcirculation and the presence of vasospasm at the level of the resistance arterioles (*Piana et al.*, 1998). Therefore, it is thought that improving the microcirculation would be a very useful strategy for dealing with these phenomena.

Both Nitroprusside and verapamil have been shown to be effective for managing the slow reflow phenomenon once it occurs during coronary intervention (*Ronenet al.*, 2008).

However, it remains unclear what is the optimal treatment to prevent the no/slow reflow phenomena. Since it occurs in a variety of clinical settings and is likely to have more than one mechanism, it is unlikely that a single definitive treatment will be appropriate for all cases.

Aim of the Work

Onitroprusside versus verapamil on the prevention of the no/slow reflow phenomenon in patients with acute ST segment elevation myocardial infarction undergoing primary percutaneous intervention