

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Electropolymerization of Aminoanthraquinone – Kinetics of the Polymer Film Formation and its Electroanalytical Applications

CON E

A Thesis Presented
To
Faculty of Science
Cairo University

By
Shymaa Samir Mohammed Medany
(M. Sc. 2006)
Faculty of Science, Cairo University

For
The Degree of Doctor of Philosophy
(Chemistry)

		•
		4
		•

APPROVAL SHEET FOR SUBMISSION

Title of the Ph. D. thesis:

Electropolymerization of aminoanthraquinone - Kinetics of the polymer film formation and its electroanalytical applications.

Name of the candidate: Shymaa Samir Mohammed Medany

WBerdamy

This thesis has been approved for submission by the supervisors:

Prof. Waheed A. Badawy

Signature

Prof. Khaled M. Ismail

Signature Ph. Ismeil

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department Faculty of Science, Cairo University

C JUNN

Abstract

Name

: Shymaa Samir Mohammed Medany

Title of thesis: Electropolymerization of aminoanthraquinone- Kinetics of the

polymer film formation and its electroanalytical applications.

Degree

: Ph. D. Thesis, Faculty of Science, Cairo University, 2010

(Abstract)

Aminoanthraquinone, AAQ, was electropolymerized in mixed solvent to form poly (aminoanthraquinone), PAAQ, films. In order to optimize the conditions for polymer film formation and its electrochemical response in aqueous media, the factors that influence the stability and the electroactivity of the polymer film were subjected to intensive investigation. The kinetics of the electropolymerization of PAAQ prepared from aqueous, non-aqueous and mixed solvents was carried out by determining the change of charge consumed in the polymerization process with time at different concentrations of both monomer and electrolyte. The results have shown that the process follows first order kinetics with respect to the monomer concentration either in aqueous, non-aqueous or mixed solvent. The order of the reaction with respect to the supporting electrolyte in non-aqueous solutions was found to be zero. The order of the reaction with respect to the aqueous or mixed solvent i.e. H2SO4 was found to be negative. The polymer films were successfully used as sensor for the electroanalytical determination of many hazardous compounds, e.g. phenols, and biologically important materials like dopamine. The electroanalytical determination was based on the measurements of the oxidation current peak of the material in the cyclic voltammetric measurements and calibration curves were constructed

Keywords: Aminoanthraquinone, Ascorbic acid, catechol, dopamine, electroanalytical applications, hydroquinone, kinetics, polyaminoanthraquinone.

Supervisors:

Prof. Waheed A. Badawy

Prof. Khaled M. Ismail

Prof. Dr. Mohamed M. Shoukry

Chairman of Chemistry Department Faculty of Science, Cairo University

		4
		4

Acknowledgement

I would like to express my deep thanks and grateful appreciation to Prof. Waheed A. Badawy for his continuous encouragement, valuable supervision, great effort in suggesting the points investigated and useful discussion. I would like also to express my content with his constructive criticism, and beneficial discussion through the whole process and in the evaluation stage. The guidance and support given by him were indispensable to the completion of this work.

My indebtedness and sincerest gratitude are also to Prof. Khaled M. Ismail for continuous help, encouragement, valuable supervision, and the great effort that was done through out this thesis. Whose effort and support both on the scientific and humanistic level have been behind the success of the thesis.

Contents

List of Figures	I
List of Tables	IX
List of Abbreviations	XI
Publications from This Thesis	XII
Chapter (I)	
1. Introduction	1
1.2. Aim of the work	31
Chapter (II)	
2. Experimental Techniques	33
Chapter (III)	
3. Results and Discussion	37
3.1. Polymer Film Formation	37
3.2. Factors Affecting PAAQ Film Formation	42
3.2.1. Effect of Monomer Concentration	42
3.2.2. Effect of H ₂ SO ₄ /Acetonitrile Mixed Solvent Ratios	43
3.2.3. Effect of H ₂ SO ₄ Concentration	43
3.2.4. Effect of Scan Range	44
3.2.5. Effect of Scan Rate	44
3.2.6. Influence of Scan Rate at Different Monomer Concentration	45

3.2.7. Effect of Scan Repetition	46
3.2.8. Effect of Working Electrode Material	46
3.2.9. Electropolymerization Techniques of PAAQ Formation	47
3.3. Electrochromic Properties of PAAQ Films	61
3.4. Electrochemical Response of PAAQ Films	63
3.4.1. Effect of Scan Rate	63
3.4.2. Effect of Concentration of Acids and their Neutral Salts	64
3.4.3. Electrochemical Properties of PAAQ in Aqueous and Non-Aqueous Media	65
3.4.4. Effect of H ₂ SO ₄ Concentration on Film Activity	65
3.4.5. Influence of Cations on Film Electrochemical Response	66
3.5. Infrared Absorption Spectra (IR) of PAAQ Films	73
3.6. Mechanism of PAAQ Polymerization	77
3.7. Kinetics of the Polymer Film Formation	82
3.7.1. Kinetics of PAAQ Formation in Non-Aqueous Medium	83
3.7.2. Kinetics of PAAQ Formation in Aqueous Medium	84
3.7.3. Kinetics of PAAQ Formation in Mixed Solvent	85
3.8. Electroanalytical Applications of PAAQ Polymer Film	94
3.8.1. Electroanalytical Applications of PAAQ Formed in Non- Aqueous Medium	94
3.8.2. Electroanalytical Applications of PAAQ Formed in Aqueous Medium	96
3.8.3. Electroanalytical Applications of PAAQ Formed in Mixed Solvent	97