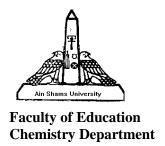


Faculty of Education Chemistry Department

New Transition Metal Complexes and Lanthanide Based Nanomaterials: Preparation, Characterization and Potential Applications


Thesis Submitted

By
Radwa Mohammed Shokry Khaled Elbohy
B. Sc. & Ed., 2007

For
The Degree of
Master for the Teacher's Preparation in
Science
(Inorganic Chemistry)

To
Chemistry Department
Faculty of Education
Ain Shams University
Cairo, Egypt

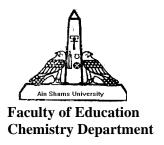
2014

New Transition Metal Complexes and Lanthanide Based Nanomaterials: Preparation, Characterization and Potential Applications

By Radwa Mohammed Shokry Khaled Elbohy B. Sc. & Ed., 2007

Under the Supervision of:

Dr. Magdy Shebl Saleh


Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University.

Dr. Mona Mostafa Ali Saif

Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University.

Dr. Asmaa Ismail Nabil

Lecturer of biochemistry, Faculty of Education, Ain Shams University.

Approval Sheet

Name of candidate: Radwa Mohammed Shokry Khaled Elbohy

Degree: M. Sc. Degree for the Teacher's Preparation in **Science (Inorganic Chemistry)**

Thesis Title: New Transition Metal Complexes and Lanthanide Preparation, Characterization **Based Nanomaterials: Potential Applications**

This Thesis has been approved by:

Approval Dr. Magdy Shebl Saleh Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University. Dr. Mona Mostafa Ali Saif Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University. Dr. Asmaa Ismail Nabil Lecturer of biochemistry, Faculty of Education, Ain Shams University. Prof. Dr. Mostafa Mohammed Ismail

> Head of the Chemistry Department Faculty of Education Ain Shams University

Faculty of Education Chemistry Department

Title Sheet

Name of candidate: Radwa Mohammed Shokry Khaled Elbohy

Date of Birth: 5/3/1987

Place of Birth: Cairo

Highest University Degree: B. Sc. & Ed., 2007

Name of University: Ain Shams

<u>ACKNOWLEDGEMENT</u>

Thanks always are for **God**

I would like to thank **Dr. Magdy Shebl Saleh** (Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University), **Dr. Mona Mostafa Ali Saif** (Ass. Prof. of inorganic chemistry, Faculty of Education, Ain Shams University) and **Dr. Asmaa Ismail Nabil** (Lecturer of biochemistry, Faculty of Education, Ain Shams University) for offering me the opportunity to carry out this interesting research work under their kind supervision and guidance. I am also indebted to my supervisors for suggesting the timely and interesting point of research, following up the progress of the research and reading the manuscript critically.

I express my appreciation to **Prof. Dr. Ramzi Maalej** (Physics Department, University of Sfax, Faculty of Sciences, 3018 Sfax, Tunisia), **Dr. Kamel Damak** (Laboratory of Radio Analysis and Environment, Sfax University, Sfax, Tunisia) and **Dr. Aisha Mbarek** (Laboratory of Industrial Chemistry, National Engineering School, University of Sfax, Tunisia) for using their lab facilities and for theoretical calculations.

Part one of this work was funded by a grant from the Egyptian Ministry of Higher Education and Scientific Research in the framework of the Joint research project between Tunisia and Egypt entitled with "Production and application of high efficient luminescent nanomaterials for latent fingerprint detection", No: 19/4/10.

Also, I want to thank **Prof. Dr. Mostafa Mohammed Ismail** (Head of the Chemistry Department, Faculty of Education, Ain Shams University) for his encouragement.

I am thankful to the support of my family and all members of the Chemistry Department, Faculty of Education, Ain Shams University.

ABSTRACT ii

ABSTRACT

New non-toxic pure lanthanide based nanomaterials and transition metal nanocomplexes as well as dispersed into silica matrix were prepared for latent fingerprint detection and biomedical applications, respectively. The prepared nanomaterials were characterized using several advanced techniques.

The lanthanide based materials consist of pure x mol% $Eu^{3+}/Y_2Ti_2O_7$ and dispersed into silica matrix, where x = 1, 2, 4, 6, 10, 15 and 30. The pure Eu³⁺/Y₂Ti₂O₇ and dispersed into silica materials have nanocrystalline structures with spherical shapes. The pure Eu³⁺/Y₂Ti₂O₇ with different doping concentrations was characterized with faint orange red emission colour. Otherwise, Eu³⁺/Y₂Ti₂O₇ dispersed into silica matrix powders give an intense pure red emission. The photoluminescence (PL) lifetime measurements showed that Eu³⁺/Y₂Ti₂O₇ dispersed the into silica matrix was characterized with constant and high PL lifetime even at high doping concentrations in comparison with the pure samples. Judd-Ofelt calculations confirmed the experimental results. The obtained pure and dispersed into silica samples have very low toxicity. The prepared nanophosphor dispersed into silica matrix was successfully developing the latent *ABSTRACT* iii

fingerprint from various forensic relevant materials, including non-porous, semi-porous and porous surfaces.

Also, chromone Schiff base complexes of Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II) and UO₂(VI) as well as Zn(II) complex-silica xerogel nanohybrid were successfully prepared in nano domain with crystalline or amorphous structures. The spectroscopic data revealed that the Schiff base ligand behaves as a monobasic tridentate ligand. The coordination sites with the metal ions are the γ -pyrone oxygen, azomethine nitrogen and oxygen of the carboxylic group. The metal complexes exhibited octahedral geometry except Cu(II) complex which has a square planar geometry and UO₂ complex in which uranium ion is hepta-coordinated. Transmission electron microscope (TEM) analysis showed that Ni(II) and Zn(II) complexes have aggregated spheres and rod morphologies, respectively. TEM images of Zn(II) complex-silica xerogel nanohybrid showed a nanosheet morphology with 46 nm average size and confirmed that the complex was uniformly distributed into the silica pores. The obtained nanocomplexes were tested as antimicrobial and results showed antitumor agents. The that Zn(II) nanocomplex and Zn(II) complex-silica xerogel nanohybrid have high activity. The toxicity test on mice showed that

ABSTRACT iv

Zn(II) complex and Zn(II) complex-silica xerogel nanohybrid have lower toxicity than *cis*platin.

Finally, the obtained results showed that the prepared nanomaterials have great potential applications in the fields of forensic and medical sciences. *CONTENTS* v

<u>CONTENTS</u>	
Acknowledgement	i
Abstract	ii
List of Contents	V
List of Figures	xi
List of Tables	xvii
List of Structures	xix
List of Schemes	XX
Abbreviations	xxi
Aim of the Work	xxiv
CHAPTER I	
General Introduction and Literature Survey	
1.1. Nanotechnology	1
1.2. Silica as a green matrix	3
1.3. Luminescent lanthanide nanocomposites	8
1.3.1. Organic antennas	16
1.3.2. Inorganic antennas	17
1.3.2.1. Lanthanide doped pyrochlore nanomaterials	18
1.3.2.2. Lanthanide doped inorganic nanomaterials co-	
doped into silica matrix	20
1.4. Transition metal nanocomplexes	23
1.5. Applications	33

CONTENTS vi

1.5.1. Fingerprint detection using lanthanide doped	
nanomaterials	34
1.5.2. Biomedical applications of pure transition metal	
nanocomplexes and dispersed into silica nanomaterial	37
1.5.2.1. Antimicrobial activity	37
1.5.2.2. Antitumor activity	39
CHAPTER II	
Experimental Techniques and Methods	
2.1. Materials	44
2.2. Instrumentation	45
2.2.1. X-ray diffraction (XRD)	45
2.2.2. Transmission electron microscope (TEM) and	
energy dispersive X-ray spectroscopy (EDS)	45
2.2.3. Elemental analysis	46
2.2.4. Fourier transform infrared spectroscopy (FT-IR)	46
2.2.5. Ultraviolet/visible (UV/Vis) spectrophotometer	46
2.2.6. Spectrofluorometer	47
2.2.7. Proton nuclear magnetic resonance (¹ H NMR)	47
2.2.8. Mass Spectrometer	48
2.2.9. Electron spin resonance (ESR) spectroscopy	48
2.2.10. Magnetic susceptibility measurements	48

CONTENTS vii

2.2.11. Conductivity measurements	49
2.2.12. Thermogravimetric analysis (TGA)	49
2.2.13. Melting point apparatus	49
2.2.14. UV lamp	49
2.2.15. Digital camera	50
2.3. Experimental methods	50
2.3.1. Preparation of phosphor materials	50
2.3.1.1. Preparation of x mol% Eu ³⁺ /Y ₂ Ti ₂ O ₇ dispersed	
into silica matrix	50
2.3.1.2. Preparation of pure x mol% $Eu^{3+}/Y_2Ti_2O_7$	51
2.3.2. Synthesis of the ligand and its metal	
nanocomplexes	51
2.3.2.1. Synthesis of the Schiff base ligand, HL	51
2.3.2.2. Synthesis of the metal nanocomplexes	52
2.3.2.2.1. Synthesis of the $[(L)Cu(OAc)]\cdot 0.5H_2O$,	
complex (1)	52
2.3.2.2.2. Unsuccessful trials	53
2.3.2.2.3. Preparation of the Zn(II) complex-silica	
xerogel nanohybrid	53
2.3.3. In vivo toxicity study	53
2.3.4. Applications	55
2.3.4.1. Latent fingerprint development	55

CONTENTS	viii
CONTENTS	Viii

2.3.4.2. Cytotoxicity experiments	56
2.3.4.2.1. Antibacterial and antifungal experiments	56
2.3.4.2.2. Antitumor experiments	56
2.4. Quantitative analysis	57
2.5. Data analysis	57
2.5.1. XRD analysis	57
2.5.2. Magnetic moment calculations	57
2.5.3. Data treatment	58
CHAPTER III	
Production of Non-toxic Photoluminescent Pure	
Eu ³⁺ /Y ₂ Ti ₂ O ₇ and Dispersed into Silica Matrix	
Nanopowder for Latent Fingerprint Detection	
Application	
3.1. Introduction	59
3.2. Results and discussion	60
3.2.1. Characterization of the phosphor materials	60
3.2.1.1. Crystal Structure and morphological studies	60
3.2.1.1.1 XRD analysis	60
3.2.1.1.2. TEM and EDS analysis	65
3.2.1.2. Optical properties	68
3.2.1.2.1. FT-IR spectra	68
3.2.1.2.2. PL properties	69

CONTENTS	ix

3.2.1.2.2.1. Excitation spectra	69
3.2.1.2.2.2. PL emission and lifetime measurements	71
3.2.1.3. Judd-Ofelt theory and radiative analysis	82
3.2.2. Toxicity test	90
3.2.3. Fingerprint detection application	90
CHAPTER IV	
Preparation and Characterization of New Non-toxic	
Transition Metal Nanocomplexes and Zn Complex-	
silica Xerogel Nanohybrid for Antibacterial and	
Antitumor Applications	
4.1. Introduction	95
4.2. Results and discussion	97
4.2.1. Characterization of the ligand and its metal	
nanocomplexes	97
4.2.1.1. Characterization of the ligand	97
4.2.1.2. Characterization of the metal nanocomplexes	101
4.2.1.2.1. FT-IR spectra and mode of bonding	101
4.2.1.2.2. Conductivity measurements	105
4.2.1.2.3. Magnetic moment measurements, electronic,	
ESR and ¹ H NMR spectra	106
4.2.1.2.4. Thermal analysis	116
4.2.1.2.5. Mass spectra	118

CONTENTS	X

4.2.1.2.6. Crystal structure and morphological studies	120
4.2.1.2.6.1. XRD analysis	120
4.2.1.2.6.2. TEM analysis	122
4.2.2. Antimicrobial and antitumor activities	128
4.2.3. Toxicity test	133
Summary	136
References	145
Arabic summary	
Arabic abstract	

LIST OF FIGURES

1.1	8
Schematic representation of the different ways of	
immobilization of compounds.	
1.2	13
Jablonski diagram for sensitized emission of Eu ³⁺	
ions by an antenna.	
13	15
Vibrational energy levels of O-H, O-D, N-H and	
N–D oscillators.	
3.1	62
XRD patterns of a) 6 mol% $Eu^{3+}/Y_2Ti_2O_7$ and b) 6	
mol% $Eu^{3+}/ Y_2Ti_2O_7$ dispersed into silica matrix	
annealed at different temperatures for 5 h.	
3.2	64
XRD patterns of pure Eu ³⁺ /Y ₂ Ti ₂ O ₇ fired at 1000 °C	
for 5 h in air at different concentrations of Eu ³⁺ ion.	
3.3	64
XRD patterns of a) 1.0 mol% and b) 30.0 mol%	
Eu3+/Y2Ti2O7 dispersed into silica matrix fired at	
1000 °C for 5 h in air.	